Research Institute for Advanced Computer Science
NASA Ames Research Center

A Biconjugate Gradient Type Algorithm
on Massively Parallel Architectures ¢)0’]

Roland W. Freund and Marlis Hochbruck

— o roan NG1-32848
(NASA-CR-16A888) A BICONJUGATE GRANIENT NTL
b ALGURITHM ON MASSIVLLY PARALLEL
ARCHITECTURES {aescarch Inst. for Aé:EL»OQB unclas
Computer <ciznce) 167 p " 63/62 0043088

RIACS Technical Report 91.07

March 1991

PRI

"

I

m

A Biconjugate Gradient Type Algorithm
on Massively Parallel Architectures

Roland W. Freund and Marlis Hochbruck

RIACS Technical Report 91.07

March 1991

A Biconjugate Gradient Type Algorithm
on Massively Parallel Architectures

Roland W. Freund and Marlis Hochbruck

The Research Institute for Advanced Computer Science is operated by
Universities Space Research Association (USRA),
The American City Building, Suite 311, Columbia, MD 21044, (301)730-2656.

Work reported herein was supported in part by DARPA via Cooperative
Agreement NCC 2-387 between NASA and USRA.

A BICONJUGATE GRADIENT TYPE ALGORITHM
ON MASSIVELY PARALLEL ARCHITECTURES *

Roland W. Freund

RIACS, Mail Stop Ellis Street
NASA Ames Research Center
MofTett Field, CA 94035, USA

and

Institut fiir Angewandte Mathematik und Statistik
Universitat Wiirzburg
Am Hubland
D-8700 Wiirzburg, Federal Republic of Germany

and

Marlis Ilochbruck

Institut fiir Praktische Mathematik
Universitit Karlsruhe
Englerstrafie 2
D-7500 Karlsruhe, Federal Republic of Germany

and

RIACS, Mail Stop Ellis Street
NASA Ames Research Center
MofTett Field, CA 94035, USA

Abstract — The biconjugate gradient (BCG) method is the “natural” gener-
alization of the classical conjugate gradicnt algorithim for Hermitian positive defi-
nite matrices to general non-Hermitian linear systems. Unfortunately, the original
BCG algorithm is susceptible to possible breakdowns and numerical instabilities.
Recently, Freund and Nachtigal have proposed a novel BCG-type approach, the
quasi-minimal residual method (QMR), which overcomes the problems of BCG.
Hcre, we present an immplementation of QMR based on an s—step version of the non-
symmmetric look-aliead Lanczos algorithm. The main feature of the s—step Lanczos
algorithum is that, in general, all inner products, except for one, can be computed
in parallel at the end of each block; this is unlike the standard Lanczos process
wlicre inner products are gencrated sequentially. The resulting implementation of
QMR is particularly attractive on massively parallel SIMD architectures, such as
thie Connection Machine.

*T'his work was supported in part by DARPA via Cooperatlve Agreement NCC 2-387 belween
NASA and the Universitics Space Research Association (USRA).

e
T

INTRODUCTION

We are concerned with the iterative solution of large sparse linear systems
Az = b, (t)

where A is a nonsingular, in general non-Hermitian N x N matrix. Some of the most
eflicient iterative schemes for (1) are Krylov subspace methods: for any initial guess
zo € CN, they generate approximations to A~1b of the form

Tp € Tg + Kp(ro,4), n=12,..., (2)
where rg = b — Azg and
K,(ro, A) = span {ro, Arg, ..., A" rg} 3

is the nth Krylov subspace generated by ro and A. For example, the generalized mini-
mal residual algorithm (GMRES) of Saad and Schultz [8] and the biconjugate gradient
algorithm (BCG) of Lanczos [6] both satisfy (2). Unfortunately, for methods like GM-
RES, work and storage requirements per iteration grow linearly with n and, therelore,
versions with restarts are used in practice, which often results in slow convergence.
In contrast, for BCG, work and storage requirements per itcration are constant and
low. However, BCG typically exhibits a rather irregular convergence behavior and the
method can even break down.

THe QMR APPROACH

In [3], Freund and Nachtigal have proposed a BCG-type approach, the quasi-
minimal residual algorithm (QMR), which overcomes the problems of BCG. The
method uses an implementation developed by Freund, Gutknecht, and Nachtigal [1, 2]
of the nonsymmetric Lanczos algorithm [5] with look-ahcad [7] to gencrate basis vectors
vy, va,... for the Krylov subspaces (3). More precisely, with

ViD= ooy s v] = [Vi Ve - VI (4)
Vi = [Vn, Vngg1 “+* Ungyi-1, k=1, 0=1(n),

we have

Kn(ro,A) = {V(")z |z € C"} for n=1,2,.... (5)

The blocks Vi in (4) just contain the vectors corresponding to the kth look-ahead
Lanczos step of length
hi = ngyy — ng.

In the sequel, we refer to the first vectors vy, in cach block as regular vectors, while
the remaining vectors are called inner veclors. Furthermore, the relation

AV = pd1) pr(n) (6)

holds. Here /1™ is an (n 4 1) x n upper Hessenberg matrix which is also block tridi-
agonal with ! diagonal blocks of size hg X b, k = 1,2,...,1. In addition to the right

Lanczos vectors vy, v,,..., the look-ahead Lanczos algorithm generates left Lanczos
vectors wy, wq,... such that

Kn(wy, AT) = span {w,w,...,w,} for n=1,2,...,
and, as in (4), we set
‘Vk = [wnk Wnp 1 ° wnk“_l], k= l,. ,I

These vectors are just constructed such that right and left Lanczos vectors correspond-
ing to different look-ahead steps are biorthogonal, i.e.,

rv [0 ii#k

and, moreover, the matrices Dy are all nonsingular.
By means of (5) and (6), the nth iterate (2) of any Krylov subspace method and
the corresponding residual vector can be written as follows:

zn = 2o+ V™2, forsome z,€ C", (8)

o= b= Az = VO (froflye — Hz,) . (9)

Iere e; denotes the first unit vector in R™H1.

For the QMR method the paramcter vector z, in (8) is chosen such that the Bu-
clidean norm of the coefficient vector in the representation (9) is minimal, i.e., as
solution of the least squares problem

Q (lIroll,er = 1™z} |, (10)

min
zEG}"

where Q, = diag (|vi]ly [|v2llgy - - s Jons1llz). Here, Q, is chosen such that all basis vee-
tors v/|lv;ll;, 5 = 1,...,n+ 1, in the representation (9) of r, have the same Euclidean
length. Note that Q.11 is an upper Ilessenberg matrix with full column rank n.
Hence (10) always has a unique solution z, and the QMR iterate z,, is well defined by
(8) and (10). Finally, we remark that z, can be easily updated from step to step, and
the resulting QMR algorithm can be implemented using only short recurrences (sce [3]
for details).

AN s—STEP LANCZOS ALGORITHM WITHH LOOK-ANEAD

To enforce the biorthogonality conditions (7), inner products of vectors of length
N need to be computed. In the implementation of the look-ahead Lanczos algorithm
described in {1, 2], this is done scquentially, i.e. inner products are calculated in cach
iteration step n. On a massively parallel machine, such as the Connection Machine,
the sequential computation of these inner products represents a bottleneck.

In this scction, we sketch a version of the look-ahcad Lanczos algorithm which
overcomes this problem and is more suited for a parallel machine. In contrast to the
scquential algorithm, where look-ahead steps of size hx > 1 are performed only if neces-
sary to avoid breakdowns of the Lanczos process, the philosophy of the s—step Lanczos

algorithm is to construct Lanczos blocks of given size hy = s, whenever possible. This is
done by first generating s — 1 intermediate inner vectors by means of simple three-term
recurrences

5n+1 = Aﬁn—Cn'}n_nnﬁn—l’ (11)
Bnp1 = ATDn = (atn — Tntlnor; (12)
with suitably chosen coefficients (., 7., and 7,, = 0. The biorthogonality conditions
(7) are then enforced only at the end of cach block. This has the advantage that all
inner products arising in the biorthogonalization process for the inner vectors of a whole
block can be computed in parallel. We remark that to enforce (7) for the inner vectors
in block [, it is suflicient to biorthogonalize them only against the vectors from the

previous blocks f = f(n), f+1,...,0 using

va = Bn= VDWW H, — = Vi DI W B (13)
Wp = Wp — Wij_TVfTﬁrn — - ‘W_ID,‘_T;WII1DH. (14)

Moreover, in general, only one previous block occurs in (13) and (14), ie., f =1 - 1.

In [4], Kim and Chronopoulos proposed an s—step Lanczos algorithm using a fixed
block size s throughout the whole process. Our numerical tests show that such an
approach is not viable. In order to obtain a robust implementation of the s—step
Lanczos algorithm, it is crucial to keep the block size variable and combine the process
with a suitable look-ahead strategy.

In the following algorithin, we outline the s—step look-ahead Lanczos method which
we propose. In cach block step, the algorithm tries to build a block of size s. If the
construction of such a block would lcad Lo a singular or a nearly singular matrix D in
(7) or to a new pair vy,,, and wp,,, of regular vectors which have dominant components
in the old Krylov subspaces K, (vy, A) or K, (wy, AT), we cither build a smaller block
or, by performing sequential steps, a bigger block.

Algorithm. Sketch of s— slep Lanczos algorithm with look-ahcad

0) Sct vy = rof||roll, and choose wy € CN with |juwl, = 1
Set711:1,l:l, 50=lb0=0,‘
Forl=1,2,... ‘

1) Compute s — 1 intermediale inner vectors via (11) and (12) forn =mny,...,n +
s—2;
Set Vi = [ﬁn, e 571;4—3—1]; W, = [lr’m e lbn(+s—l];

2) Construct the symmclric matriz ﬂ’,Tf};

3) (Biorthogonalization of inner vcelors.)
Determine [by ny = max{n; | n; <m—s+1};
Forn=n;+1,...,n+ 38— 1, compule v, and wy via (13) and (14);
If [[vall; = 0 or ||wal, = 0, stop;
Set Vi = [vny, * Unygs—t], Wi=[wn, - Wngse1l;

4) Construct the symmetric mairiz D; = W,TVl;

5) Decide whether to construct vn,4+, and wn 4, as regular vectors or to reduce the
block size and go to 8) or 6), respectively;

6) If it is possible to construct reqular vectors v, 1, and wy 4, for s < s:
setnpr =n+ 8, Vi=[vn o Ungs-1], Wi=[wn, -+ Wn4s-1], and go to 8);
Otherwise, try to increase the block size s by sequential steps:
set 8 = s,
Loop:
Set3=3+1,n=mn+3-2, compule ¥4y and Wp4y via (11) and (12), and
biorthogonalize immediately:
determine f by ny = max{n; | n; < ny—3+1} and compute v,y and w, 4 using
formulas (13) and (14) (with n replaced by n+1); If ||vn4i1|l; = 0 or ||wngi|l; = 0,
slop;
Set Vi = [Vi vpg1], Wi = [W) wnq1] and update the malriz I‘V,TV ;
This loop is terminated if we can consiruct rcgular vectors vn 415 and wy 45 or if
we have reached the mazimum block size. In the first case, go to 8), in the second
case, go lo 7);

7) Determine the smallest value which failed the checks and update the upper bound
n(A) to this value. The block is now enforced to close. Let its size be § and sct

Ny =N+ 3§, Vi= [vnl Tt vn,+§—l] W, = [wm Tt wn(+§—l];

8) (Construct regular vectors v,,,, and wy,.)
Setn = nyp1, Tn = Abp_y, 0 = AT@n_q, and compute

by = B = Vi Dy LWL 6, - ViID7 W By,
W = Wn— WiniDiIEVE %, — WD TV i,
If ||tnll; = 0 or ||i,]], = 0, stop;
Otherwise, set vy, = v,/ ||0n]l, and wy = W, /||10,)l,;

9) Construct the Ith blocks of the block tridiagonal matriz H"=1 and set 1 =1+ 1.

We note that the quantity n(A) in step 7) is an estimate of the norm of the matrix
A which is used for our checks to guarantee that the Lanczos vectors remain sufliciently
lincarly independent. A similar concept was first introduced for the sequential look-
ahead Lanczos algorithm in [1]. These checks, the criteria for the decision in step 5), and
further details of the algorithin will be presented in a forthcoming paper. IHere, we only
remark that the important properties (5), (6), and (7), which werc used in the derivation
of the QMR method, remain valid also for the s—step Lanczos algorithm with look-
ahead. Also, we note that the above algorithm can be realized with the same number of
inner products as in the classical nonsymmetric Lanczos method without look-ahead.
In particular, the s x s matrix "V,TVI in step 2) can be constructed by computing only
28 — 1 inner products, rather than s? as the straightforward approach would suggest.
Moreover, in step 4), the matrix D; can be updated from ﬁ",TV;, using only already
available inner products. Finally, numerical experiments with an implementation of
the resulting QMR algorithm on the CM-2 will be reported elsewhere.

o

T P NP —

e 1 111 € W CH NI W)| e O

1]

[2]

(3]

(4]

(5]

(6]

[7]

(8]

REFERENCES

R.W. Freund, M.II. Gutknecht, and N.M. Nachtigal, An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices, Part I, Technical Re-
port 90.45, RIACS, NASA Ames Research Center, November 1990.

R.W. Freund and N.M. Nachtigal, An implementation of the look-ahead Lanczos
algorithm for non-Hermitian matrices, Part II, Technical Report 90.46, RIACS,
NASA Ames Research Center, November 1990.

R.W. Freund and N.M. Nachtigal, QMR: a quasi-minimal residual method for non-
Hermitian linear systems, Technical Report 90.51, RIACS, NASA Ames Research
Center, December 1990.

S.K. Kim and A.T. Chronopoulos, An efficient nonsymmetric Lanczos method on
parallel vector computers, Technical Report 90-38, University of Minnesota, July
1990.

C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, J. Res. Natl. Bur. Stand. 45, 255-282 (1950).

C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res.
Natl. Bur. Stand. 49, 33-53 (1952).

B.N. Parlett, D.R. Taylor, and Z.A. Liu, A look-ahead Lanczos algorithm for
unsymmetric matrices, Math. Comp. 44, 105-124 (1985).

Y. Saad and M.IL. Schultz, GMRES: a generalized minimal residual algorithm
for solving nonsymmetric lincar systems, SIAM J. Sci. Stat. Comput. 7, 856-869
(1986).

Krylov Subspace Methods for
Complex Non-Hermitian Linear Systems

Roland W. Freund

RIACS Technical Report 91.11

May 1991

Krylov Subspace Methods for
Complex Non-Hermitian Linear Systems

Roland W. Freund

The Research Institute for Advanced Computer Science is operated by
Universities Space Research Association (USRA),
The American City Building, Suite 311, Columbia, MD 21044, (301)730-2656.

Work reported herein was supported in part by DARPA via Cooperative
Agreement NCC 2-387 between NASA and USRA.

Krylov Subspace Methods for

Complex Non-Hermitian Linear Systems

Roland W. Freund

RIACS, Mail Stop Ellis Street
NASA Ames Research Center
Moffett Field, CA 94035, USA

and

Institut fiir Angewandte Mathematik und Statistik
Universitat Wirzburg
D-8700 Wiirzburg, Federal Republic of Germany

Abstract. We consider Krylov subspace methods for the solution of large sparse linear
systems Az = b with complex non-Hermitian coefficient matrices. Such linear systems arise
in important applications, such as inverse scattering, numerical solution of time-dependent
Schrédinger equations, underwater acoustics, eddy current computations, numerical com-
putations in quantum chromodynamics, and numerical conformal mapping. Typically the
resulting coefficient matrices A exhibit special structures, such as complex symmetry, or
they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace
approach with iterates defined by a quasi-minimal residual property, the QMR method,
for solving general complex non-Hermitian linear systems. Then, we study special Krylov
subspace methods designed for the two families of complex symmetric respectively shifted
Hermitian linear systems. We also include some results concerning the obvious approach
to general complex linear systems by solving equivalent real linear systems for the real and
imaginary parts of z. Finally, numerical experiments for linear systems arising from the

complex Helmholtz equation are reported.

This work was supported in part by DARPA via Cooperative Agreement NCC 2-387
between NASA and the Universities Space Research Association (USRA).

Contents

1. Introduction

1.1. Krylov subspace methods 1
1.2. Ideal Krylov subspace methods for non-Hermitian matrices 2
1.3. Complex linear systems 3
1.4. Overview of the thesis 1
1.5. Notation 6
2. An implementation of the look-ahead Lanczos process for non-Hermitian matrices
2.1. The classical nonsymmetric Lanczos algorithm 8
2.2. Orthogonal polynomials 10
2.3. The lock-ahead Lanczos algorithm 12
2.4. The look-ahead strategy ' 17
2.5. Implementation details 23
3. A quasi-minimal residual method for general non-Hermitian matrices
3.1. The quasi-minimal residual approach 25
3.2. Implementation details 27
3.3. The connection between QMR and BCG 30
3.4. A convergence theorem - 33
3.5. QMR for shifted matrices 36
3.6. Preconditioned QMR 38
4. Lanczos methods for complex symmetric matrices
4.1. The Lanczos recursion for complex symmetric matrices 10
4.2. A theorem on incurable breakdowns 12
4.3. QMR and related algorithms for complex symmetric matrices 44
5. CG-type algorithms and polynomial preconditioning for shifted Hermitian matrices
5.1. Three CG-type approaches 46
49

5.2. Practical implementations
5.3. Comparisons with other implementations. Operation counts 53

5.4. Error bounds
5.5. Polynomial preconditioning

6. Complex versus equivalent real linear systems

6.1. Equivalent real linear systems
6.2. Correspondence of Krylov subspace methods
6.3. A connection between MR and CGNR for complex symmetric matrices

7. Numerical experiments

7.1. The test problems
7.2. Complex symmetric linear systems
7.3. Shifted Hermitian linear systems

8. Concluding remarks
Acknowledgments

References

U
9 D

(=]

67
70
il

74
75
78

84

85

86

1. Introduction

In this chapter, we make some introductory remarks about Krylov subspace methods and
list applications where complex linear systems arise. Furthermore, we give an outline of

the thesis and introduce some notation.

1.1. Krylov subspace methods

One of the most frequently encountered tasks in numerical computations is the solution of

nonsingular systems of linear equations
Az =b. (1.1)

Often, as for linear systems resulting from finite difference or finite element approximations
to partial differential equations (PDE’s), the coefficient matrix A of (1.1) is very large,
but sparse. A natural way to exploit the sparsity of A in the solution process of (1.1)
is to use iterative techniques which involve the coefficient matrix A only in the form of
matrix-vector products. Most iterative schemes of this type fall into the category of Krylov

subspace methods: they produce approximations Zn, n = 1,2,..., to A7'b of the form
Tn € o + Kn(ro, A4). (1.2)
Here z, is any initial guess for (1.1), 7o = b — Azq the corresponding residual vector, and
Ka(ro, 4) = span{ro, Arg, ... LA}

is the nth Krylov subspace generated by- ro and A. Two classical examples of Krylov
subspace methods are the conjugate algorithm (CG hereafter) due to Hestenes and Stiefel
[HS] and Chebyshev iteration [GV], which are both methods for the solution of linear
systems (1.1) with Hermitian positive definite coefficient matrices A. Especially CG is one
of the most powerful techniques for solving Hermitian positive definite linear systems. Its
success has prompted extensive research into generalizations of the method to indefinite
and non-Hermitian matrices and a number of CG-like Krylov subspace methods have been
proposed (see, e.g., [Sto, 551, Saa2] for surveys). Besides CG-like schemes, the second
important subclass of Krylov subspace methods are semi-iterative algorithms modeled
after Chebyshev iteration. Eiermann, Niethammer, and Varga [ENV] have established a
theory for methods of this type for non-Hermitian linear systems.
In this thesis, we are mainly concerned with CG-like Krylov subspace methods.

1.2. Ideal Krylov subspace methods for non-Hermitian matrices

Classical CG has two outstanding features. First, its iterates (1.2) are characterized by a
minimization property. Secondly, z, can be generated cheaply. by means of simple three-
term recurrences. For general non-Hermitian matrices, the situation is less satisfactory.
An ideal CG-like Krylov subspace method for solving non-Hermitian linear systems (1.1)
would have features similar to the classical CG algorithm. It would produce iterates z, in
(1.2) which:
(i) are characterized by a minimization property over Kn(ro. A). such as the minimal
residual property
|6 — Az,] = ZEIO‘F}(!:I(TO.A) [Ib — Az||, zn € 7o + Kn(ro,A); (1.3)
(ii) can be computed with little work and low storage requirements per iteration.
Unfortunately, it turns out that. for general non-Hermitian matrices, one cannot fulfill (1)
and (ii) simultaneously. This result is due to Faber and Manteuffel [FM1, FM2] who have
shown that CG-type algorithms with (i) and (ii) exist essentially only for matrices of the

special form

A=¢e%T+i0l) where T = TH is Hermitian, 0,0 € R, (1.4)

(see also Voevodin [Voe] and Joubert and Young [JY)). Instead, most CG-type methods
for non-Hermitian linear systems satisfy either (i) or (ii).

In the first category, the most successful scheme is the generalized minimal residual
algorithm (GMRES hereafter) due to Saad and Schultz [SS2]. It produces the iterates
defined by (1.3) and thus fulfills (i). However. it violates (ii). since work and storage per
iteration grow linearly with the iteration number. Consequently, in practice. one cannot
afford to run the full algorithm and it is necessary to use restarts. For difficult problems.
this often results in very slow convergence. 7

In the second category, the archetype is the biconjugate gradient algorithm (BCG
hereafter) which goes back to Lanczos [Lan2] and, later on. was revived by Fletcher [Fle].
BCG is based on simple three-term recurrences, which keep work and storage requirements
constant at each iteration. However, the BCG iterates are defined by a Galerkin condition
rather than a minimization property (i), which means that the algorithm can exhibit —
and typically does — a rather irregular convergence behavior with wild oscillations in
the residual norm. Furthermore, in the BCG algorithm, breakdowns — more precisely,
division by 0 — may occur. In finite precision arithmetic, such exact breakdowns are
very unlikely; however, near-breakdowns may occur, leading to numerical instabilities in
subsequent iterations. Recently, two modifications of BCG, namely CGS [Son] and Bi-
CGSTAB [Van], have been proposed. However, while these methods seem to work well in

2

O D)0 IO W1

many cases, they do not address the problem of breakdowns, and thus they too, like BCG.
are susceptible to instabilities. In exact arithmetic, both CGS and Bi-CGSTAB break

down every time BCG does.

1.3. Complex linear systems

While most linear systems which arise in practice have real coefficient matrices A4 and real
right-hand sides b, there are some important applications which lead to complex linear
systems. PDE'’s which model dissipative processes (see, e.g., [Pie, Chapter 10], [Mar])
usually involve complex coefficient functions and/or complex boundary conditions [BGuT,
KG], and discretizing them yields linear systems with complex matrices 4. A typical

example for this category is the complex Helmholtz equation
—Au —oyu + ioqu = f, (1.5)

where o, o, are real coefficient functions, which describes the propagation of damped
time-harmonic waves as, e.g., electromagnetic waves in conducting media (EH, Chapter §].
Equations of type (1.5) also arise in situations where damping is usually negligible, as in
long-range wave propagation problems in underwater acoustics [BGoT, Gol, SLJ}, where,
by means of parabolic approximation techniques [Tap| and discretization in range direction.
the computation of three-dimensional wave propagation is reduced to the solution of a
two-dimensional complex Helmholtz equation at each range step. Further applications,
which give rise to complex linear systems, include discretizations of the time-dependent
Schrodinger equation

i%:— = —Au+ V(u) (1.6)
using .implicit difference schemes [DFP], electromagnetic inverse scattering problems [PM].
SPM], eddy current computations [BHST], numerical computations in quantum chromo-
dynamics [BBGRM], and numerical conformal mapping {Tru].

In all these examples, the resulting coefficient matrices A4 are non-Hermitian. How-
ever. they still exhibit special structures. Often, as for the linear systems resulting from
(1.6), 4 is a shifted Hermitian matrix, i.e., a matrix of the form (1.4). In most other
cases, which lead to complex systems, as for the linear systems resulting from the complex
Helmholtz equation (1.5) with first-order boundary conditions, the coefficient matrix 1s

complex symmetric:

A= AT. (1.7)

Note that the two families (1.4) and (1.7) overlap. The matrix (1.4) is complex symmetric
if, and only if, T is real.

Surprisingly, when the resulting linear systems (1.1) are solved in practice, usually
no attempt is made to exploit the special structures (1.4) or (1.7). Indeed, there are two

3

popular approaches. The first one (see, e.g., [BG]) is to apply preconditioned CG to the

Hermitian positive definite normal equations

AH Az = A, (1.8)

Of course, complex numbers can always be avoided by rewriting (1.1) as a real linear
system for the real and imaginary parts of z. The second popular approach is to solve
this real and, in general, nonsymmetric linear system by one of the CG-like methods, for
example GMRES. It turns out that in both cases the resulting iterative schei..cs tend to
converge slowly. As a consequence, complex linear systems have the bad reputation of
being difficult to solve by CG-type methods.)

Finally, we mention two applications for which shifted linear systems

Ar=b A=M+ol,
(1.9)

where) and b are real and fixed, ¢ € C,

need to be solved repeatedly for different shifts ¢. This situation arises when real parabolic
equations are solved using high-order implicit methods (see, e.g., [GS1, GS2]). Further-
more, linear systems (1.9) also come up in the context of frequency response computation

in control theory {Lauj.

1.4. Overview of the thesis

The purpose of this thesis is twofold. First, we present a novel BCG-like approach for
general nonsingular non-Hermitian linear systems (1.1), the quasi-minimal residual algo-
rithm (QMR hereafter), which overcomes the problems of BCG. The QMR method was
first proposed by Freund {Fred] for the special case of complex symmetric linear systems
and recently extended to general non-Hermitian matrices by Freund and Nachtigal {FN1.
FN2]. The QMR approach uses a look-ahead variant of the nonsymmetric Lanczos process
to generate basis vectors for the Krylov subspaces Kn(ro.4). The look-ahead Lanczos
approach was first proposed by Taylor [Tay] and Parlett, Taylor, and Liu (PTL]. For the
QMR method, we use the implementation of the look-ahead Lanczos process which was
recently developed by Freund. Gutknecht, and Nachtigal [FGN, FN1]. Using the Lanc-
zos basis, the actual QMR iterates are then defined by a relaxed version of (1.3), namely
a quasi-minimal residual property. The QMR approach can be implemented using only
short recurrences and hence it still satisfies the requirement (ii) for an ideal Krylov subspace
method. The quasi-minimal residual property ensures that QMR, unlike BCG, converges
smoothly; moreover, existing BCG iterates can also be easily and stably recovered from
the QMR process. Finally, for the QMR method, it is possible to obtain error bounds
which are essentially the same as the standard bounds for GMRES. To the best of our
knowledge, this is the first convergence result for a BCG-like algorithm.

4

Second, we present CG-type methods which exploit the special structures (1.4) re-
spectively (1.7). In particular, we show that. for complex symmetric matrices, work and
storage for the QMR approach can be halved. For shifted Hermitian matrices (1.4). we
propose and analyze three different CG-type methods based on the minimal residual prop-
erty (1.3), a Galerkin condition, and an Euclidean error minimization property. For the
practical use of CG-type methods it is crucial that they can be combined with efficient
preconditioners. Unfortunately, the more classical techniques, such as incomplete factor-
ization, lead to preconditioned matrices which in general are no longer in the class (1.4).
e show that this problem can be resolved and the special structure of the matrices (1.4)
preserved by using polynomial preconditioning, and results on the optimal choice of the
preconditioner are given. Note that polynomial preconditioning is an attractive approach
for vector and parallel computers and, because of that, has become very popular in recent
vears (see [Saa2] for a survey).

Finally, we also present some results which indicate that for Krylov subspace methods
it is always preferable to solve the original complex linear system rather than equivalent
real ones.

The outline of this thesis is then as follows. In Section 2, we are concerned with
the nonsymmetric Lanczos process. In particular, we sketch the implementation of the
look-ahead Lanczos algorithm proposed in [FGN, FN1]. In Section 3, we present the QMR
method for general nonsingular non-Hermitian matrices. In Section 4. we consider CG-
tvpe algorithms for complex symmetric matrices. In Section 5, we study CG-like methods
for shifted Hermitian matrices. In Section 6, we are concerned with the issue “complex
versus equivalent real linear systems”. In Section 7, we present some numerical examples
for complex symmetric and shifted Hermitian linear systems. Finally, in Section 8. we

make some concluding remarks.

1.5. Notation

Throughout this thesis, all vectors and matrices are assumed to be complex in general. As
usual. i = /=1. For any matrix M = [m i], we use the following notation:
M = [mj5] = the complex conjugate of M,
MT = [my;] = the transpose of M,
M = II_T = the Hermitian of M,
ReM = (M + 7)/2 = the real part of M,
Im M = (M — ¥)/(2i) = the imaginary part of M,
Omax(M) = the largest singular value of M,
Omin(M) = the smallest singular value of M,
IM|| = omax(M) = the 2—norm of M.

For any vector ¢ € C™ and any matrix B € C™*™, we use the following notations:

lle]l = VeH¢ = Euclidean norm of ¢,
liellB = VeHBe = B-norm of c, if B is Hermitian positive definite,
A(B) = the set of eigenvalues of B.
Amax(B) = the largest eigenvalue of B, if B is Hermitian,

min(B) = the smallest eigenvalue of B, if B is Hermitian,

A
Kn(c,B) = span{c, Be, ..., B"‘Ig} '
= the nth Krylov subspace'of C™ generated by ¢ and B.

Furthermore, we denote by

=0 - 010 - 0] €R"

the jth unit vector of length n and by I, the n x n identity matrix. If the dimension n is

evident from the context, we will simply write e; and I. We denote by

Hn ={¢(A)EGO+UIA+"'+UH/\" i 00,015.+-+30n EC}
and NI = {®(N)=ap+01A+ - +0ad" | 00,01,...,0, €R}

the set of complex and real polynomials of degree at most n, respectively. F requently, we

will make use of the relation

K.(c,B) ={®B)c|®€Man}, n=12,.... (1.10)

6

Throughout this thesis, .V denotes the dimension of the coefficient matrix 4 of (1.1)

J -
and 4 € CV*V is in general non-Hermitian. Moreover, we use the following notation:

Ty = initial guess for (1.1),

T, = nth iterate,

rn = b — Az, = nth residual vector,
vn, = nth right Lanczos vector,

wyn = nth left Lanczos vector.

If it is not evident from the context which iterative method we are considering, quantities
of different algorithms will be distinguished by superscripts, e.g., z@MR and o BG,
Finally, one more note. In our formulations of the nonsymmetric Lanczos algorithm
and of BCG, we use A7 rather than 4H . This was a deliberate choice in order to avoid
complex conjugation of the scalars in the recurrences; the algorithms can be formulated

equally well in either terms.

2. An implementation of the look-ahead Lanczos process for non-Hermitian

matrices

In this chapter, we first recall the classical nonsymmetric Lanczos method and its close
relationship with formally orthogonal polynomials (FOP’s hereafter). Next, we describe
the basic idea of look-ahead Lanczos procedures, and finally, we present an actual imple-

mentation of a Lanczos algorithm with look-ahead.

2.1. The classical nonsymmetric Lanczos algorithm

In 1950, Lanczos [Lanl] proposed the following algorithm for successive reduction of a

general matrix A € CV*N 1o tridiagonal form.

Algorithm 2.1. (Classical Lanczos method.)
0) Choose rg, sg € CV with rg, so #0;
Set ¥ = 19, Wy = S, Vo = wo =0,
Forn=1,2,...
1) Compute n = X 5,;
Ifn =0: set L =n — 1, and stop;
2) Otherwise, choose Bp,vn € C with Bayn =17,
Set vn = Up/vn and wp = Wa/B3n;
3) Compute oy = wZAvn;
Set Tn41 = Avn — AnUn — Bavn-1;

Set U}n+1 = ATwn — apWy — YnWn-1-

We refer to [Wil, pp. 388-394] for a detailed discussion of the Lanczos algorithm: in
particular, proofs of the properties collected in Proposition 2.2 below can be found there.

In the sequel, the notations

Vn=[01 v v L'n}, I/Vn':[wl w2 wn]s (21)
"y By 0 oo 0]
T2 a2 ' ' :
Lo B,
[0 0 Yn Qnl

will be used. Moreover, let
L, =dimKn(ro,4) and L;=dimKn(s0,AT) (2.3)

8

L LI T T Y T g

denote the grade of ro with respect to A and the grade of so with respect to A7 . respectively.
(cf. [Wil, p. 37]) and set
L.=min{L,.L;}. (2.4)

We remark that L, > 1 (L; > 1) is just the smallest integer such that the subspace
Ki,(ro,A) (K, (s0,AT)) is A-invariant (AT-invariant).

Proposition 2.2.

a) In exact arithmetic, Algorithm 2.1 stops after a finite number of steps n = L + 1 and

0<L< L.
b) Fork,n=1,2,...,L:

T, _ 0, 1fk¢n,
‘“”“"*{1, i k= n. (2:5)
c) Forn=1,2,...,L:
Ka(ro,A) = span{vy,va,...,vn}, (2.6)
Kn(s0,AT) = span{wi, w2,...,wa}, -
AV, =V,H,+[0 0 -+ 0 Dppa], 2.7)
2.
ATW, =W, HI +[0 0 - 0 Wps1]- '

Note that the termination indez L of Algorithm 2.1 is the smallest integer such that

@ 1841 =0. (2.8)
There are two essentially different cases for fulfilling the termination condition (2.8). The
first case, referred to as regular termination, occurs when oy, = 0 or wyy, = 0. If
tre =0, then L = L, and the right Lanczos vectors v;,...,vr, span the A-invariant
subspace Kp,(ro,4). Similarly, if @;,, = 0, then L = L; and the left Lanczos vectors
wy,...,wr, span the AT invariant subspace Az, (0, AT). Unfortunately, it can also happen
that the termination condition (2.8) is satisfied with &, ., # 0 and @, # 0. This second
case is referred to as serious breakdown [Wil, p. 389]. Note that, in this case, L < L. and
the Lanczos vectors span neither an A-invariant nor an AT invariant subspace of cV.

It is the possibility of serious breakdowns, or, in finite precision arithmetic, of near-

breakdowns, i.e.,

BT5, ~0, but W,#0 and 0, #0, (2.9)

that has brought the classical nonsymmetric Lanczos algorithm into discredit. However,
by means of a look-ahead procedure, it is possible to leap (except in the very special case of
an incurable breakdown [Tay]) over those iterations in which the standard algorithm would

9

break down. In the next section, using the intimate connection between the Lanczos
g
process and FOP’s, we describe the basic idea of the Lanczos method with look-ahead.

2.2. Orthogonal polynomials

One readily verifies that the Lanczos vectors generated by Algorithm 2.1 are of the form
Um = m@n-l(.4)ro and W, = m%_l(mso, (210)
where &,_; € I~ is a uniquely defined monic polynomial. Then. introducing the formal
inner product
(8, 0) 1= ($(4T)s0) 7 (8(A)ro) = sTU(A)B(A)ro (2.11)
and using (2.6), (1.10), and (2.10), we can rewrite the biorthogonality condition (2.5) in
terms of polynomials:
(Pn_1. 9} =0 forall ®ell, (2.12)
and
(Pn-1,Pn-1) #0. (2.13)
Note that, except for the case of Hermitian 4 = A¥ (cf. Chapter 3), the formal inner
product (2.11) is indefinite. Therefore, in the general case, there exist polynomials & # 0
with “length” (&, ®) = 0 or even (®,$) < 0.

A polynomial ¢,_, € I _1, ®,-; # 0, that fulfills (2.12) is called 2 FOP (with
respect to the formal inner product (2.11)) of degree n — 1 (see, e.g., [Bre], [Dra], [Gut]).
Note that the condition (2.12) is empty for n = 1, and hence any $9 = 09 # 0is a FOP
of degree 0. From (2.12),

(pn—-l()\) = 0Jyp +01A + - +Un_1/\n—1

is a FOP of degree n —1 if. and only if, its coefficients 0q. . ..,0n_1 are a nontrivial solution
of the linear system

Ho K1 H2 T lln.—2 - fin1

poo . : o1 fin

12 | = —ony | Mt (2.14)

m"—sj On-2 Kan-3
Lffn—2 -+ v H2an-5 [2n-4

Here

By = sOT.Aij’r'D: (M, 1), j=0,1,...,

are the moments associated with (2.11). A FOP ®,_, is called regular if it is uniquely
determined by (2.12) up to a scalar, and it is said to be singular otherwise. We remark
that a FOP of degree 0 is always regular. With (2.14), one easily verifies the statements

in the following

10

Proposition 2.3.

a) A regular FOP &,_, has exactly degree n — 1. In particular, a regular FOP is unique
if it is required to be monic.

b) A regular FOP of degree n — 1 exists if, and only if. the coefficient matrix of (2.14) 1s
nonsingular.

c) Let ®,_, be a regular FOP (with respect to the formal inner product (2.11)) of degree
n — 1. Then, a regular FOP of degree n exists if, and only if, (2.13) is satisfied.

We remark that, by part b) of Proposition 2.3, singular FOP’s occur if, and only if, the
corresponding linear system (2.14) has a singular coefficient matrix, but is consistent. If
(2.14) is inconsistent. then no FOP &,_, exists. This case is referred to as deficient, and
by relaxing (2.12) slightly, one can define so-called deficient FOP’s (see [Gut] for details).
Simple examples (see, e.g., [FN1, Section 13]) show that the singular and deficient cases
do indeed occur.

Now let us return to the classical nonsymmetric Lanczos process 2.1. Using (2.8).
(2.10), (2.11), and part c) of Proposition 2.3, we conclude that a serious breakdown occurs
if, and only if, no regular FOP exists for some L < L. In this case, the termination index
L is the smallest integer L for which there exists no regular FOP of degree L.

On the other hand, there is a maximal subset of indices

{n1,n2,...,ny} € {1,2...., L.}, m:i=1<np < <ny <L., (2.15)

such that, for each j = 1,2,...,J, there exists a monic regular FOP ®n, - € lI5;-1. Note
that n; = 1 since ®o(\) = 1 is a monic regular FOP of degree 0. Furthermore, three

successive regular FOP’s ¥ 1, ¥Ynp._y,and ¥ _. are connected via a relation of the
: n,_,-b j—1 n -1

form

By . 1(A) =W, 21N, 1 () = b1 (),
’ 671)'-1 € C.

(2.16)

w A~
here ¥,; - € Hnj“_,,j

The recurrences (2.16) for FOP’s were mentioned by Gragg [Gra, pp. 222-223] and by

Draux [Dral; also, in the context of the partial realization problem, by Kung [Kun, Chapter

IV] and Gragg and Lindquist [GL]. For a proof of (2.16), we refer the reader to [Gut].
Now, setting, in analogy to (2.10),

v"i = ¢nj¢nj—1(‘4)r0 and wn’- = 'rl)n,' én,'—l(AT)'so’

where ¢n;, ¥a; # 0 are scaling factors, we obtain two sequences of vectors {vn; }le and
{wn; }f=l which, in view of (2.16), can be computed by means of short recurrences. These
vectors will be called regular vectors, since they correspond to regular FOP’s. Note that
v; and w; are always regular. The look-ahead Lanczos procedure is an extension of the

11

classical nonsymmetric Lanczos algorithm: in exact arithmetic, it generates the vectors v,
and wp;, j=1,...,J. fny = L. in (2.15), then these vectors can be complemented to a
basis for an A-invariant or A %-invariant subspace of C¥. An incurable breakdown occurs
if, and only if, ny < L, in (2.15). Finally, note that the regular vectors v, and w,, are
uniquely defined (up to a nonzero scalar) by the biorthogonality relations

wlv= wlv, =0 forall v€Kn-1(ro,4), we Ko, —1(s0,47). 217
j=1,...,J. (217)

The look-ahead procedure we have sketched so far only skips over exact breakdowns.

It yields what is called the nongeneric Lanczos algorithm in [Gut]. Of course, in finite
precision arithmetic, a viable look-ahead Lanczos algorithm also needs to leap over near-
breakdowns (2.9). Roughly speaking, a robust implementation should attempt to generate
only the “well-defined” regular vectors. In practice, then, one aims at generating two

sequences of vectors {vn,, }A_ | and {wn;, }E_,, where
(nip 3K, € {nj}o =1, (2.18)

is a suitable subset of (2.15). We set j; = 1, since v; and w; are always regular.

Taylor [Tay) and Parlett, Taylor, and Liu [PTL] were the first to propose such a
practical procedure. However, in [Tay, PTL], the details of an actual implementation are
worked out only for look-ahead steps of length 2.

In [FGN, FN1), Freund, Gutknecht, and Nachtigal have proposed an implementation
of the look-ahead Lanczos method for general complex non-Hermitian matrices. The algo-
rithm can handle look-ahead steps of any length and is not restricted to steps of length 2.
On many modern computer architectures, the computation of inner products of long vec-
tors is a bottleneck. The algorithm described in [FGN, FN1] has the additional feature
that it requires the same number of inner products as the classical Lanczos process, as
opposed to the look-ahead algorithm described in [Tay, PTL], which always requires ad-
ditional inner products. In particular, our implementation differs from the one in [Tay,
PTL)] even for look-ahead steps of length 2.

In the next section, we present a sketch of the look-ahead Lanczos algorithm proposed

in [FGN, FN1] and list some of its basic properties.

2.3. The look-ahead Lanczos algorithm

First, we introduce some notation. As in the last section, n = 1,2,... denote the indices
of the Lanczos vectors v, and w,. From now on, we will always normalize the Lanczos
vectors so that

|lvall = lwall =1, n=1,2,.... (2.19)

12

T N1

For simplicity, we set n; := n;, for the indices of the “well-defined” regular vectors, cf.
(2.18). However. notice that there is no guarantee that the indices ny generated by the
look-ahead Lanczos algorithm in finite precision arithmetic actually satisfy (2.18). The
index k = 1,2.... is used as a counter for the computed regular Lanczos vectors v,, and

Wn, -
In order to obtain complete bases for the subspaces In(rg, 4) and Ka(s0,AT), we

need to add vectors

Up € Kn(rOs-'i) \ I\’n—l(rOw'i) and wn € Kn(SOaAT) \ Kn—l(SOaAT)w

n=ng_1+1,...,n — 1, k=2,3,....

(2.20)

to the two sequences of computed regular vectors vn, and wn,, k¥ = 1,2, ..., respectively.
The vectors in (2.20) are called inner vectors. We will refer to both the regular and the
inner vectors v, and w, generated by the look-ahead variant as right and left Lanczos
vectors, in analogy to the terminology for the classical nonsymmetric Lanczos Algorithm
2.1.

For each fixed n = 1,2,..., we denote by | = {(n) the number of the last computed
regular vector with index < n. Then, the first n Lanczos vectors vy, ..., vn and wy,...,Wn

generated by the look-ahead Lanczos process can be grouped into [blocks

V(k) = [Unk UVnp+1 UnH-x—I]a vV(k) = [w"h Wrne+1 777 Wi -1 }’
k=1,2,...,01—-1, (2.21)
V(l) = [’Un’ Uﬂl+l v vn}, ‘V“) = [u’nl Wni+1 T u)ﬂ]'

In the sequel, we denote by
hkznk.H—nk,]C=1,2,...,I—1, }~l1=n—n1

the number of vectors in each block. Note that the first vectors vn, and w,, in each block
are just the regular vectors. The Ith block is called complete if n = n;4; — 1: in this case.
at the next step n + 1, a new block is started with the regular vectors v,,,, and wn 4.
Otherwise, if n < ni4; — 1, the Ith block is incomplete and at the next step, the Lanczos
vectors vn41 and wyy; are added to the [th block as inner vectors.

So far, we have not specified how to actually construct the inner vectors. The point is
that the inner vectors can be chosen such that the v,’s and w,’s from blocks corresponding
to different indices k are still biorthogonal to each other. More precisely, in analogy to the

biorthogonality relation (2.5) for the classical Lanczos algorithm, we have

0 ifj#K,

k=1,2,...,1 2.22
D® ifj=k (222)

(pV(J'))Tv(k) = {

13

We remark that the inner vectors constructed because of an exact breakdown correspond
to singular or deficient FOP's, while the inner vectors constructed because of a near-
breakdown correspond to polynomials which in general are combinations of regular. sin-
gular, and deficient FOP’s.

Next, we show that the matrices D{*) in (2.22) are necessarily nonsingular, exce for

possibly the lth block, i.e.,

D) is nonsingular, k=1,2,...,1—1, and D is nonsingular if n = n;4; — 1. (2.23)
Indeed, assume that D®) = (W’("))TVU‘) is singular for some k < I, where, 1n t.ie case
k = 1, the Ith block is complete. Then, there exists a vector z such that

(WENTYy®z =0 and VP2 +#£0. (2.24)

With (2.22) and (2.24), it follows that ¥ = vn,,, + V(B 2 fulfills
wlo=0 forall w€ Kn,,-1(s0,47). (2.25)
Using (2.17) and (2.25), we conclude that ¢ = @vn,,, for some scalar ¢ # 0, which is

impossible.
With these preliminaries, the basic structure of the look-ahead Lanczos algorithm is

as follows.

Algorithm 2.4. (Sketch of the look-ahead Lanczos process.)
0) Choose o, so € CV with ro, so # 0;
Set vy = ro/llroll, w1 = so/l|soll;
Set V) =y, W) =, DO = (W)Ty),
Setny=1,l=lLvp=w=0,Vi=W=0p=6=1
Forn=1,2,... :
1) Decide whether to construct vn+) and wn41 as regular or igner vectors
and go to 2) or 3), respectively;
2) (Regular step.) Compute
bupr = Ave — VDD W INT 4o,
— y=D(pU=0)=1(rU=0)T gy .

. 2.20)
By = ATwn = WODO)"T (V)T AT, (
_ W(l—l)(D“-l))-T(V(l_l))TATwn,
set iy =n+1,1=101+1, V) =w® =@, and go to 4);
3) (Inner step.) Compute
5n+] = Av, - Cnvn - (nn/Pn) Un—-1
_ V(I_l)(DU_l))—I(W(l—]))TAvn,
(2.27)

u.’n-{—l = ATwn - ann - (ﬂn/fn)wn—l
— WU—I)(D“—I))—T(V(,—I))TATwn;

14

4) Compute pns1 = ||tn+1ll and €ns1 = D |l;
If pny1 =0 or £npq1 = 0: set L = n, and stop;
Otherwise, set

Cntl = Ong1/Pns1y Wntl = Wni1/Ens1.
VO = (VO pay], WO S[WO way], (2.28)

D = (W(”)TV“).

If only regular steps 2) are performed, all blocks have size h; = 1 and Algorithm 2.4 reduces
to the classical Lanczos process. Therefore, the strategy for the decision in step 1) should
be such that regular steps are performed whenever possible and blocks of size hx > 1 are
built only to avoid exact or near-breakdowns. A practical procedure for the decision in
step 1) will be discussed in Section 2.4.

In (2.27), ¢(» and n,, n =0, 1,..., are recurrence coefficients with n,,, =0,k =1,2,....
One may choose these coefficients so that they remain the same from one block to the next
and change only with respect to their index inside the block, n—ny, or one may choose these
coefficients so that they change from one block to the next. For instance, one practical

choice for the basic three-term recursions
v=Av, — Cnvn - Un(vn—l/Pn) and w = ATwn - ann - nn(wn—l/é‘n)

for generating the inner vectors in (2.27) is Chebyshev iteration [Man], where the recurrence
coefficients are derived from suitably scaled and translated Chebyshev polynomials. In this
case, the translation parameters could be adjusted using spectral information obtained
from previous Lanczos steps. We do not necessarily advocate the use of fancy recursions in
(2.27). From our experience, the algorithm we propose builds very small blocks, typically
of size 2 or 3. Except for artificially constructed examples, the largest block we observed
in test runs with “real-life” matrices was of size 4. It occurred for the SHERMANS matrix
from the Harwell-Boeing set of sparse test matrices [DGL] where out of 1500 steps, the
algorithm built 2 x 2 blocks 49 times, 3 x 3 blocks 7 times, and one 4 x 4 block (see [FN2,
Example 2]). Hence, the recursion in (2.27) is not overly important, and in our experiments,
we have used the recursion coefficients ¢, = 1 and, if n # ni, 7, = 1. Finally, one could
consider orthogonalizing (in the Euclidean sense) the right respectively left Lanczos vectors
within each block. However, for the blocks we have seen built, such an orthogonalization
process did not lead to better numerical properties of the algorithm. Therefore, in view
of the additional inner products which need to be computed, orthogonalizing within each
block is not justified.

Next, we list some basic properties of Algorithm 2.4 which will be used in the sequel.
First, note that the Lanczos vectors generated by Algorithm 2.4 indeed satisfy the block

15

biorthogonality relations (2.22). The proof is standard, using induction on n. and is

- -

omitted here. Setting, in analogy to (2.1),

Va=[v, t2 ... va] =[VI v o v,
iy (2.29)
Wo=[w, wp ... wn] =[WH W& . wy,
one clearly has
Ka(ro.A) = {V(")z | € C"}
(2.30)

Kn(so,AT) = {W(")z | zZE C"} .

Moreover, the recursions for the v’s in (2.26) and (2.27) can be rewritten in matrix formu-

lation as follows:

AV, =V, H. (2.31)
Here,
() — | Hn 5 20"
H,* = [T] , (2.32)
Pn+1€n
where
I~ ai ﬂ'}.’ 0 e 07
Y2 Q2 ' ' '
: S T B
L0 - 0 M ol

is an n x n block tridiagonal matrix with blocks of the form

R * 0 .- 0 *]
Pre+l * . ' : ; 0 0 pa.
= | O pmer T L e L O P XY
. C. , . : ' :
0 0
. . . *

0 e I S

The blocks Gk are in general full matrices. Furthermore, for k =1,...,1 =1, the matrices

ok, Bk, and v are of size hg X h, hk—1 X hi, and hg X hg—1, respectwely The matrices ay,
81, and ¥ corresponding to the current block [are of size hy x ki, hi_1 x h;, and Ry x hi_y,
respectively. Here h; = h; if the {th block is complete.

In view of (2.33) and (2.34), H' is an upper Hessenberg matrix with positive subdi-

agonal elements, and hence
rank H® = n. (2.35)

16

11 S N0

In exact arithmetic, the stopping criterion in step 4) of Algorithm 2.4 will be satisfied
after L, steps, where L, is given by (2.3) and (2.4), except in the very special situation of
an incurable breakdown. Recall from Section 2.2 that an incurable breakdown occurs if,
and only if, ny < L. in (2.15). One can show (cf. [Gut]) that, if ny < L.. Algorithm 2.4
will produce, starting with the regular vectors vn, and wn, where n; = ny. infinite blocks
vV and W of nonzero Lanczos vectors such that (W) TV is the infinite zero matrix.

We would like to stress that incurable breakdowns are very rare and do not present
a problem in practice. Furthermore, even in the case of an incurable breakdown, the
look-ahead Lanczos process still yields information on the spectrum of A, as Taylor [Tay]
showed in his Mismatch Theorem (see also [Gut, Par]). For later use, we summarize the

termination properties of the look-ahead Lanczos process in the following

Proposition 2.5. There is a termination index L < N such that, in exact arithmetic,
Algorithm 2.4 will either stop in step n = L with pp41 =0 or {41 = 0. or, starting with
the regular vectors vp4; and wp4y, an incurable breakdown will occur. If pr41 = 0 or

£r+1 = 0, then vy,...,vL or wy....,wL Span the A-invariant subspace I'p(vy,A) or the
AT-invariant subspace K1 (so, AT), respectively. Moreover, in all cases,
AMHL) C A(A). (2.36)

2.4. The look-ahead strategy

In this section, we discuss the criteria used to decide in step 1) of Algorithm 2.4 whether
a pair of Lanczos vectors vn4; and w,4; is built as inner vectors or as regular vectors.
We propose three criteria, namely (2.40)-(2.42) below. If all three checks (2.40)-(2.42)
are satisfied, then v,4; and wn4; are constructed as regular vectors, otherwise. they are
constructed as inner vectors. Let us motivate these three criteria.

First, recall (cf. (2.23)) that for vny4; and wp41 to be built as regular vectors it 1s
necessary that D is nonsingular. Therefore, it is tempting to base the decision “regular
versus inner step” solely on checking whether D is close to singular, and to perform a

regular step if, and only if,

Tmin(D) > tol, (2.37)
for some suitably chosen tolerance tol. For example, Parlett [Par] suggests tol = e/ or
tol = €!/3, where € denotes the roundoff unit. Then (2.37) would guarantee that complete

blocks of computed Lanczos vectors satisfy
Omin(DF) 2 tol, k=1,2,...
This, together with (2.22), would imply by [Par, Theorem 10.1] that

¢ !
Tmin(Via) > tol nd oma(Wa)2 2%, n=ne-1,k=12.... (2.38)

Vn v
17

Since the columns of V, and W, are unit vectors, omin(Va) and omin(1,) are a measure
of the linear independence of these vectors: in particular. (2.38) would ensure that the
Lanczos vectors remain linearly independent. However, in the outlined algorithm. the
block orthogonality (2.22) is enforced only among two or three successive blocks. and n
finite precision arithmetic. biorthogonality of blocks whose indices are far apart is typically
lost. The theorem assumes that (2.22) holds for all indices, and without this. the theorem
fails in finite arithmetic. We illustrate this with a simple example.

Example 2.1. In Figure 2.1, we plot Omin (DU (dots), min; <k <i(n) (min(D'*1)) so0lid
line), and /7 omin(Vy) (dotted line), as functions of the iteration indexn=1,2....,fora
random 50 x 50 dense matrix. The theorem predicts that

min Vn > . min D(k) y
VA omia(Va) 2| mif (7mia)

which is clearly not the case.

107 T L T T
104 -
100 -

102

105 | -

104 | : |

10-11

1014 r‘.: e o E

1

1017 - L
0 20 40 60 80 100

Figure 2.1. Omin (DU (dots), min;<k<i(n) (Omin(D)) (solid line), and
V7 Omin(Va) (dotted line), plotted versus the iteration index n.

As this simple example shows, the check (2.37) alone does not ensure that the com-

18

puted Lanczos vectors are sufficiently linearly independent. In particular, if the look-uliead
strategy is based only on criterion (2.37). the algorithm may produce. within a block. Lanc-
20s vectors which are almost linearly dependent. When this happens. the check (2.37) usu-
ally fails in all subsequent iterations and thus the algorithm never completes the current
block. i.e., it has generated an artificial incurable breakdown.

In addition, numerical experience indicates another problem with (2.371: for values
of tol which are “reasonably” larger than machine epsilon, the behavior of the algorithm
is very sensitive with respect to the actual value of tol. We also illustrate this with an

example.
Example 2.2. Here we consider the 3-D PDE

Lu=f on (0,1)x(0,1)x (0,1), (2.39)
where 5/ 5 5 3 p 3
- _ ryl _ = ry__ti _ = ty_li
Lu=-7%5; (5 02) By (e ay) Bz (e a:)
Ju 1
et - 2
+30(I+y+~)ax+(1+x+y+z _50>u,

with Dirichlet boundary conditions u = 0. The right-hand side f is chosen such that
u=(1-0)1-y»1l-2)1-e*)(1=-e?)(1-¢7)

is the exact solution of (2.39). We discretize (2.39) using centered differences on a uniform
15 x 15 x 15 grid with mesh size h = 1/16.- This leads to a linear sysrem (1.1) with
real nonsymmetric coefficient matrix 4 of order N = 3375 and 22275 nonzero clements.
We applied the QMR Algorithm 3.1 based on the look-ahead Lanczos Algorithm 2.4 to
this linear system. As initial guess, we used 7o = 0. and, in Algorithm 2.4, ~y = 7o was
chosen. This example was run on a machine with € & 1.3E—29. In the first case. we et
tol = e!/4 ~ 6.0E—08, while in the second case, we set tol = €!/3 =~ 2.3E-10. In Figure 2.2.
we plot amin(D(l("))) versus the iteration index n for the two runs. the dotted line for elil
and the solid line for ¢!/3. In the first case, the algorithm starts building a block which it
never closes, and the singular values clearly become smaller and smaller. Yet if tol is only
slightly smaller, as in the second case, the algorithm runs to completion, in this case solving
the linear system to the desired accuracy, and thus indicating that the block built in the
first case was not a true, but an artificial incurable breakdown. Furthermore, in the second
case, the QMR approach takes n = 149 steps to reduce the norm of the initial residual
by a factor of 10~%; see Figure 2.3, where the relative residual norm Irall / lIroll is plotted
versus n (solid line). For the run with tol = ¢!/* ~ 6.0E—08, the resulting convergence
curve is shown as the dotted line in Figure 2.3. Notice that, due to the artificial incurable

breakdown, QMR does not converge in this case.

19

104 = T T =
103 = 3
1010 :
1017 3
10‘24 = 3
10-31 - : —

0 50 100 150

Figure 2.2. ¢!/* (dotted line) and €'/? (solid line), plotted versus the iteration

index n.

100 T
L—

101
102+
103}
104+

105+

106

107 — :
0 50 100 150

Figure 2.3. Relative residual norm |[r,|| / ||ro]| plotted versus n.

These numerical examples clearly show that the decision “regular versus mner step”
cannot be based on (2.37) alone. Instead, we propose to relax the check (2.37). so that
it merely ensures that DU(") is numerically nonsingular, and to add the checks (2.41}
and (2.42) below which guarantee that the computed Lanczos vectors remain sufficiently

linearly independent. Hence, instead of (2.37), we check for
omin(DUM) > ¢, (2.40)

where ¢ denotes the roundoff unit.

Our numerical experiments have shown that typically the algorithm starts to generate
Lanczos vectors which are almost linearly dependent, once a regular vector vn4y was
computed whose component Av, € Rnii(ro, A) is dominated by its component in the
previous Krylov space Kn(ro,-4) (and similarly for wp41).

In order to avoid the construction of such regular vectors, we check the {;-norm of the

21

coefficients for VU= and V0 in (2.26); vp41 can be computed as a regular vector only it
ny—1 | |

Z i((D'{-”)-](II"(I_”)T-'lvn)}i Snt-'l)

e (2.41)

and S [(DI)THIW) dwn), | <).

j=n

Here n(A4) is a factor depending on the norm of 4; we will indicate later how this factor
is computed. Similarly, we check the {;-norm of the coefficients for WU=1 and WY in

(2.26); wn41 can be computed as a regular vector only if

n;—1
S (D) T)T AT wa),| < n(4)
mnhen (2.42)
L DOYV-Tv T 4T, 3.
and 3 [(DO) V)T AT < n(4)
J=ny

The pair vn4; and W, 4 is built as regular vectors only if all the checks in (2.40)-(2.42)

hold true.
We need to indicate how n(.4) is chosen in (2.41) and (2.42). Numerical experience
with matrices whose norm is known indicates that setting n(4) = ||4[] is too strict and can

result in artificial incurable breakdowns. A better setting seems to be n(A) = 10-[[4]. but
even this is dependent on the matrix. In any case, in practice one does not know 4], and
there is also the issue of a maximal block size, determined by limits on available storage.
To solve the problems of estimating the norms and a suitable factor n(.4). as well as cope
with limited storage and vet allow the algorithm to proceed as far as possible. we propose
the following procedure. Suppose we are given an initial value for n(A4). based either on
an estimate from the user (for example, n(A) from a previous run with the matrix 4), or

by setting

n(4) = max {|lAn], HATu'l I}

Note that here A denotes the matrix actually used in generating the Lanczos vectors, thus
including the case when we are solving a preconditioned linear system (cf. Section 3.6).
We then update n(A) dynamically, as follows. In each block, whenever an inner vector is
built because one of the checks (2.41) or (2.42) is not satisfied, the algorithm keeps track of
the size of the terms that have caused one or more of (2.41)-(2.42) to be false. If the block
closes naturally, then this information is not needed. If, however, the algorithm is about
to run out of storage, then n(A) is replaced with the smallest value which has caused an

inner vector to be built. The updated value of n(A) is guaranteed to pass all the checks in

22

(2.41" and (2.42) at least once, and hence the block is guaranteed to close. This also frees
up the storage that was used by the previous block, thus ensuring that the algorithm can

proceed.

2.5. Implementation details

Ve now turn to a few implementation details for Algorithm 2.4. In particular. we show
that our implementation of the look-ahead Lanczos process requires the same number of
inner products per step as the classical Lanczos Algorithm 2.1. For a regular step, one
needs to compute D (WNT 4, and (W'“‘”)TAv,l in (2.26). For an inner step, one
needs to compute (1VU=I)7 4y, in (2.27) and to update D in (2.28). We will show that
for a block of size hj, only 2k, inner products are required: 2h; — 1 will be required to
compute D), and one inner product will be required to compute (WINT 1, We will
obtain (WU=D)T Av, without performing any inner products. Note that a block of size
h; in Algorithm 2.4 corresponds to h; steps in Algorithm 2.1, which each require 2 inner
products. In addition, in step 4) of the look-ahead Lanczos algorithm. Euclidean norms
of 2 vectors of length V need to be computed. However, for a robust implementation of
the classical Lanczos process it is also advisable to scale the Lanczos vectors v, and w, 1n
Algorithm 2.1 to have unit length. cf. [Tay, PTL].
To simplify the derivations, we will use the “monic” versions

1 1 v
tn= —vn=Pn_1(A)ro and Wn = —wn = Bn_1(AT)sg (2.43)

n n

of the Lanczos vectors v, and w,. where ®,_; € II,—; is monic and ¢,. vn € C. By
v DU . we denote the matrices defined as in (2.21) and (2.22). with the monic
vectors instead of the original Lanczos vectors. Clearly, all quantities involving the original
vectors vy, and wn can be obtained from the corresponding quantities involving @, and w,
simply by scaling. Finally, we remark that, using a similar argument as in (2.44) below,

one easily verifies that
(WO 45, = (VNTATi, and (WOD)T A0, = (V)T AT,

Therefore, the coefficients (D)~T(V{")TATw, and (DU=)=T(yU=-NT 4Ty, which
oceur in the recursions for the left Lanczos vectors in (2.26) or (2.27), can be generated from
(DY Y(WT Ap,, and (DU~ (WU-T 4p,, without computing any additional in-

ner products.
Consider first D®. Using (2.43) and the fact that polynomials in A commute, we

deduce that
BT Om = 57 Bj-1(A)8m_1 (A)ro = 57 Pm-1(A)®j-1(A)ro = wlo;. (2.44)

23

This shows that the matrix D'¥ is symmetric, and hence we only need to compute its

upper triangle.

We will now show that once the diagonal and first superdiagonal of D have been
computed by inner products, the remaining upper triangle can be computed by recurrences.
Let w; and ¢,y be two vectors from the current block. Using (2.27) and the fact thar the

inner vectors from block ! are biorthogonal to the vectors from the previous block, wc have

w;rf'm = lb_,T(A{)m—l - Cm—li’m—l - 77m—1£'m—2)

T » - ~T ~ T~
(‘4 wj)TUm—l - Cm—le Um—1 — Mm-1W; Vm-2

X . N T x AT
(W 41 + (w; + Nj05—1) Om=1 — (m-1Wj Um=1 — Tm—-1W; Um-2

~T T~ T
J+1vm 1+<)w vm—1+77] —lvm 1 Cm—le Um—-1 = m-1W; U

M

Thus, u‘;fﬁm depends only on elements of DO from the previous two columns, and hence,
with the exception of the diagonal and the first superdiagonal, can be computed without
any additional inner products. Note that the recurrences and the biorthogonality used
in the above derivation are enforced numerically, and so computing LDJTi’m by the above
recurrence should give the same results - up to roundoff - as computing the inner product
directly.

We will now show how to compute (W ()T 45, with only one additional inner product,
while (IA‘AV("I))TAﬁn can be obtained with no additional inner products. Consider UZ'JTA&,,,

for w; a vector from either the current or the previous block. We have

BT by = (AT0;) 0 = (D1 + (; + 15851 T o,
= JT+1vn+CJ f +anT—11"
For j < n; = 1. (ﬁ/’(l‘”)T" = 0, and hence w, T4t, = 0. For j = n; — 1, the above

reduces to W1 _ A, = @I ¢n, which is cornputed as part of the first row of D). For

n; < j < nyy1, all of the terms needed are available from D", Finally, for the last vector
in the current block, j = nj4+1 — 1, we do not have wnT,“v,,. and hence have to compute it

directly, thus requiring another inner product.

24

"

3. A quasi-minimal residual method for general non-Hermitian matrices

We now turn to linear systems (1.1). From now on, it is always assumed that 4 is nonsin-
gular. Furthermore, all iterative algorithms considered in the sequel are Krylov subspace
methods, i.e., their iterates zn,, n = 1,2,.... satisfy (1.2). where 1y € C" is any given
initial guess for the exact solution A-'bof (1.1). Finally, rn = b— A4z, always denotes the

residual vector corresponding to the nth iterate z,.

3.1. The quasi-minimal residual approach

In this section, we describe the basic idea of the QMR approach for solving general non-
Hermitian linear systems (1.1).
We set
po = |Iroll, v1 =ro/po- (3.1)

Let vy,vz,...,v, be the right Lanczos vectors generated by Algorithm 2.4, with the nor-
malized initial residual v; as one of the two starting vectors. By the first relation in (2.30),

we have the parametrization
Tn =10+ Vaz, 2E€ Cn: (32)

for all possible iterates (1.2). Note that the second starting vector, w; € CN, 1s still

unspecified. Due to the lack of a criterion for the choice of u;, one usually sets w; = v] in

practice.
From (3.1) and (2.31), the residual vectors corresponding to (3.2) satisfy

r, =19 — AVpz=rp — Vn+1H,(f): = Vo1 (poe(‘n+” - H,(f):) . (3.3)
Next, we introduce an (n + 1) x (n + 1) diagonal weight matrix
Q. = diag(wy, w2, .., wans1)y w; >0, 7=1...,n+ 1, (3.4)

to serve as a free parameter that can be used to modify the scaling of the problem. With
it, (3.3) reads

o = Vn+1Q;IQn (poe§n+l) _ H,(:)z)
(3.5)
= n+10;l (dn - QnH,(:)Z) , with dn = w1p06§n+1).

Ideally, we would like to choose z € C™ in (3.5) such that ||rll is minimal. However, since
in general V,41 is not unitary, this would require O(Nn?) work, which is too expensive.

25

Ve will instead minimize just the Euclidean norm of the bracketed terms in (3.3), 1.e., we
will choose z = z, € C" as the solution of the least squares problem

= min

min |dn - QnHS:). (3.6)

”d" - Q. H:,

By (2.35) and (3.4), H'® and Q. HL are (n+1)xn matrices with full column rank n. This
guarantees that the solution =, of (3.6) is unique and hence, via (3.2), defines a unique nth
iterate z,. In view of the minimization property (3.6), we refer to this iteration scheme as
the quasi-minimal residual (QMR) method. Clearly, the QMR iterates still depend on the
choice of the weights w; in (3.4). In our numerical experiments, the simplest scaling

wy=1, j=1,2..., (3.7)

gave satisfactory results. Recall from (2.19) that all the columns of 174, are unit vec-
tors. Hence, the scaling (3.7) ensures that all basis vectors v;/wj, j = 1,...,n + 1, in
the representation (3.5) of r, have the same Euclidean length; this is a "natural” require-
ment. However, better strategies for choosing 2, might be possible, and therefore we have
formulated the QMR approach with a general scaling matrix {2,.

For the solution of the least squares problem (3.6), we use the standard approach (see,

e.g., [GVL, Chapter 6]) based on a QR decomposition of Q. H:
Q.H® = QH [%’*] . (3.8)

Here, Q,, is a unitary (n + 1) x (n + 1) matrix, and R, is a nonsingular upper triangular

n x n matrix. Inserting (3.8) in (3.6) yields

: R f
dn —QuHP 2| = min Q) (R z)zs
:rél(l:nn n I :le‘ Qn Q 0 ‘]
. R
= min ndn — "z
:eC” Q [0]
Hence, z, is given by
. LB}
zp = R7',, where t,=| [, [-t" } = Qndn. (3.9)
) Tn+1
Tﬂ
Furthermore, we have
dn = QuH O 20 || = [Fatal- (3.10)

We conclude this section by summarizing the basic structure of the QMR algorithm.

26

Algorithm 3.1. (QMR algorithm.)
0) Choose zp € CV and set ry = b — Azro. po = |[roll, v1 = ro/po;
Choose wy € CY with ||un] = 1;
Forn=1,2,... :
1) Perform the nth iteration of the look-ahead Lanczos Algorithm 2.4;
This yields matrices Vy, Vas, Sf) which satisfy (2.31);
2) Update the QR factorization (3.8) of Q. H and the vector t, in (3.9);

3) Compute
Tn =T+ VaR7 tn; (3.11)

4) If z,, has converged: stop.

3.2. Implementation details

In this section, we give some of the details for the actual implementation of steps 2), 3),
and 4) of the QMR Algorithm 3.1. In particular. it is shown that the QMR iterates z, can
be computed with short recurrences. This approach for updating the iterates z, is based
on a technique which was first used by Paige and Saunders [PS] in connection with their
SYMMLQ and MINRES algorithms for real symmetric matrices.

First, note that the QR decomposition (3.8) of Q,,H,(f) can be computed by means
of n Givens rotations, taking advantage of the fact that Q, H. is an upper Hessenberg

matrix. Hence, the unitary factor in (3.8) is of the form

_ Gn-1 O G 0 a1
Qn-Gn[0 1] [0 In_l}’ (3.12)
where, for j = 1,2,....n,
I,-, O 0
G; = 0 ¢; sj|, with ¢;€R.s;€C. c? + ;2 =1 (3.13)
0 —-3; ¢

Recall that, in view of (2.33) and (2.32), 0, H' is block tridiagonal. Therefore, the upper

triangular factor in (3.8) is of the form

'51 €2 93 0 017
0 52 €3 ' ' :
Ro=|: W " 01 (3.14)
. t . t. t. 9{
g
| 0 0 4

where the blocks &, and ¢, are of the same size as the blocks ar and Ji. respectively.
in (2.33). Moreover, the diagonal blocks éx are nonsingular upper triangular matrices.
Clearly, a QR decomposition based on unitary matrices (3.12) limits fill-in to the row
above each block Ji in (2.33). Hence each of the blocks 8k in (3.14) has possible nonzero
entries only in its last row.

Next, we note that the decomposition (3.8) is easily updated from the factorization
of Qn_lH,(:_)l of the previous step n — 1. Indeed, to obtain R,. one only needs to compute

its last column,
[/J'l ﬂn]T = Rne(nn)a (315)

and append it to Rn—;. This is done by first multiplying the last column of Q.HE by
the previous Givens rotations; by (2.33), this last column has zero entries in positions

1,2,...,ngG, where

max (n;-; — 1,1) if v, 1s an inner vector,
ng =
max (n;-2 - 1,1) if v, is a regular vector.
Therefore, only the Givens rotations with indices ng,ng +1,...,n—1 have to be applied,
and, by setting
& :
: _ Gn—l 0 Gn—2 0 Gnc 0 (e)
B B [P H e
H 1
14

we obtain the desired vector (3.15) up to its last component up. It remains to multiply

(3.16) by a suitably chosen Givens rotation G which zeros out the last element v =

Wn+1Pn+1. To achieve this, set

cnz—M——, 's?:cnz, if g 3#0.
ul® + [P # (3.17)

cn =0, S,=1, if u=20.
and finally one gets g, = ¢, + snv. For later use, we notice that

lsnﬂnl = Wn+1Pn+1, (318)

which is readily verified using (3.17). The vector t, in (3.9) is updated by setting

_ tn—l
w1

28

Clearly, ¢, differs from t,—; only in its last two entries which are given by
Th = CnTn and Tp41 = —3p Tn. (3.19)

Next, we turn to the computation of the QMR iterates 7, in (3.11). We define vectors

pj via

Po=[p1 p2 ... pal=VaR" (3.20)

Then, with (3.11) and (3.9), it follows that
In = Tn-1 +pnTn-

It remains to show how to compute p,. In analogy to the partitioning of V5 in (2.21) and

(2.29), we group the columns of P, into blocks
P, =[PV p@ ... pi] (3.21)
With (3.20), (3.14), and (3.21), one obtains the relation

p — (Vm _ pU=Vg, _ P("’2)9l) 571, (3.22)

and thus p, can be updated via short recurrences.
Finally, for step 4) of Algorithm 3.1, a convergence criterion is needed. We stop the

QMR iteration as soon as
lIrall < tol - |lroll; (3.23)

here tol is a suitable tolerance, e.g., tol = 10~°. In the QMR algorithm described so far.
neither the residual vectors r, nor their norms ||r,|| are generated explicitly. However, in
part a) of the next proposition, we derive an upper bound for lIrnll which is available at
no extra cost. In our implementation, the convergence criterion is checked for this upper
bound, (3.24), rather than |r,|l. Once this test is satisfied, we switch over to checking
(3.23) for the true residual norm ||ra{|. Typically, this is necessary only in the last one or
two iterations, since (3.24) is a good upper bound for ||rn||.

The residual vector itself can be easily updated at the expense of one additional

SAXPY per iteration, based on the recursion given in part b) of the following

Proposition 3.2. Forn=1,2,...:

a)
Irnll < lIroll VR 41 |s152- - Sn-15n j=1rna>rcl+l (w1/wj); (3.24)
b)
CcnT
Th = |3n| Tn-1 > n+lvn+l~ (325)
Wn+1

Proof. By taking norms in (3.5) and with (3.10), we obtain
Irall S WVasall - 127 - [Faal- (3.26)
Now, from (2.19) and (2.29), Vo4 has n+1 columns of Euclidean norm 1, and this implies

Vsl € VA + 1. .27)

Furthermore, by (3.4),
9. < max (1/wj). (3.28)
)1=1 n+l

.....

Finally, by (3.19),
l%n+ll = ‘%ll : l3152"'3n—13n|a (329)

where, in view of (3.9), (3.5), and (3.1),
71 = |Iroll wi, (3.30)

and by combining (3.26-3.30), one obtains the inequality (3.24).
Now we turn to part b). By inserting z = z, from (3.9) in (3.5) and using (3.8), one

obtains

Tn = Tne1¥Yn+l, (3.31)
where
0
Ynt1 = Vn+1Qr—lef 0
1

From (3.12), one readily verifies that two successive vectors yn+1 and y, in (3.31) are

connected by

[
Yntl = —Sn¥n + ——Unt1. (3.32)
Wn+1

Finally, by inserting (3.32) in (3.31) and using the second relation in (3.19), we arrive at
(3.25). O

3.3. The connection between QMR and BCG

In this section, we are concerned with the connection between QMR and BCG. In partic-
ular, it is shown that BCG iterates can be easily recovered from the QMR process.
In the BCG approach, one aims at computing iterates z, which are characterized by

the Galerkin type condition
wT(b— Azn) =0 forall w€ Kn(s0,AT), zn € 7o+ Kalro,). (3.33)

(see, e.g., [Saal]). Here, 5o € CY is any nonzero vector. Usually, one sets so = ro. In the
classical BCG algorithm [Lan2, Fle, Jac], the iterates (3.33) are generated as follows.

30

P

Algorithm 3.3. (BCG algorithm.)
0) Choose 19 € CV and set qo =10 = b— Azo:
Choose sy € CN, so # 0, and set o = To = So;
Forn=1,2,... :
1) Compute 6, = F,?_lrn_l/tjf_,.-iqn_l and set Tp = In-1 + 6ngn—-1:
Set rp =rp1 — 6nAgqn-y and rp = Tq-1 — 6n,-1T§n_1:
2) Compute pp = #Lrn /F_1rac1;
Set gn =Tn + Pngn-1 and §n = Tn + Pndn-1;
3)If r,=0 or 7', =0, stop.
BCG is closely related to the classical nonsymmetric Lanczos algorithm. Indeed (see,

e.g., [Saal]), forn=1,2,...,
Tne1 = ®n¥n, én € C, ¢ # 0: and Tp_1 = wnwn, d)n € C, ¢' 7é 07 (334)

where v, and w, denote the vectors generated by the classical Lanczos Algorithm 2.1 with
starting vectors
To and S9. (335)

Unfortunately, like the Lanczos algorithm, BCG is also susceptible to breakdowns and
numerical instabilities. Obviously, Algorithm 3.3 breaks down prematurely, if

§T_Aqno1 =0, Fao1 #0, Tao1 #0, (3.36)
or
FT rao1 =0, Fno1 0, Taoy #0, (3.37)

occurs. We will refer to (3.36) and (3.37) as breakdown of the first and second kind.
respectively. In general, Galerkin iterates (3.33) need not exist for every n. This is the
cause of the breakdown of the first kind. Indeed, one can show that (3.36) occurs if no
BCGQ iterate z, exists. Breakdowns of the second kind have a different cause: by (3.34).
(3.37) is equivalent to a serious breakdown in the classical nonsymmetric Lanczos process.

Next, we rewrite the Galerkin condition (3.33) in terms of the look-ahead Lanczos
Algorithm 2.4, started with the initial vectors (3.35). This yields a formulation of the
BCG approach for which breakdowns of the second kind, except for ones caused by an
incurable breakdown in the look-ahead Lanczos process, cannot occur. In analogy to (3.2),

we use the parametrization
Tn = To + Valtn, un€C", (3.38)
for the BCG iterates. Then, by (2.31), the corresponding residual vector satisfies
ro= b Azn = Vo (fa = Hattn) = (tn), g1, With fa = poei”. (3.39)

31

By inserting (3.39) in (3.33) and using (2.30), it follows that the iterate (3.3S) satisfies
(3.33) if, and only if,

C WIVa (fa = Hatn) = (un)a Wy Gnsr (3.40)
To simplify the discussion of (3.40), we will attempt to recover the BCG iterate only when
the current block ! = I(n) in Algorithm 2.4 is complete. Therefore, in the sequel, it is
always assumed that n = njy; — 1. This ensures that, in view of (2.22) and (2.23), the

linear system (3.40) reduces to

Houp = fa, (3.41)
from which we can now derive a simple criterion for the existence of the nth BCG iterate.
Proposition 3.4. Let n=ny; —1,1=0,1,.... Then, the following three conditions are
equivalent:

(i) the BCG iterate zBCG defined by (3.33) exists;
(ii) Hpn is nonsingular:
(i11) e # 0.

Moreover, if J:,?OG exists, then

IKG — .’BQMR _+_ T"|sn!2 (3 49)
n — %n C,2_‘ ne Gz
w
[[7BC|| = |Irol| - Is152 -+ Snm1$n] ——— (3.43)
Wn4+1Cn

Proof. Clearly, an nth BCG iterate exists iff the linear system (3.41) has a solution. From
(3.39), (2.33), and (2.34), the extended coefficient matrix [fn H,] of (3.41) is an upper
triangular matrix whose diagonal elements are all nonzero, and thus it has full row rank
n. Consequently, (3.41) has’a solution iff H, is nonsingular. This shows the equivalence
of (i) and (i1).

Next, using (3.8). (2.32), and (3.12), one readily verifies that

OnrQn 1 Ho = [I"-‘ 0] R.. (3.44)

0 ¢n
This relation implies that (ii) and (iii) are equivalent.
Now assume ¢, # 0. From (3.41) and (3.44) it follows that

-1 | In= -
u, = R;? [. 1 1/0cn] Qn-1Qn-1fn. (3.43)

Recalling the definitions of d, and f, in (3.5) and (3.39), and using (3.9), we can rewrite
(3.45) as follows:

Un = zn + R} [0] . (3.46)

'Fn/cn — Tn

32

)
AR

By comparing (3.38) and (3.46) with (3.2) and (3.9). and by using (3.20), we obtain the

relation)
MR Tn
0= (2 o)

n

which. by (3.19). is just (3.42). By inserting (3.41) in (3.39). it follows that

rBC = —(Un)abnsr. | (3.47)

From (3.47), (3.46), and (3.9), we obtain
Tn

p where pn = (Ra), .- (3.48)

[9n41]
o) = L]

In view of (3.18),

~ Snln

[On+1ll = prt1 = [sastn] (3.49)
Wn4l

Then. by inserting (3.49), (3.29), and (3.30) in (3.48), we get (3.43), and this concludes

the proof.

Proposition 3.4 shows that existing BCG iterates can be recovered easily from the
QMR process. By (3.43), ||[rZC|| can be computed at no extra cost from quantities which
are generated in the QMR Algorithm 3.1 anyway. In particular, one may monitor ||~ B9
during the course of the QMR iteration, and compute z5C via (3.42) whenever the actual
BCG iterate is desired.

Finally, we remark that CGS [Son] and Bi-CGSTAB [Van] are modifications of the
BCG Algorithm 3.3. In many cases, these algorithms have better convergence properties
than BCG. However, neither CGS nor Bi-CGSTAB addresses the problem of breakdowns.
Indeed. one can show that, in exact arithmetic, CGS as well as Bi-CGSTAB break down

every time BCG does.

3.4. A convergence theorem

In this section, we derive bounds for the QMR residuals which are essentially the same as
the standard bounds for GMRES. To the best of the author’s knowledge, this is the first
convergence result for a BCG-like algorithm for general non-Hermitian matrices.

Let L denote the termination index of the look-ahead Lanczos Algorithm 2.4, as
introduced in Proposition 2.5. We remark that, in exact arithmetic, the QMR Algorithm
3.1 will also terminate in step n = L. For a diagonalizable matrix M, we denote by

M) = i X fx-t
K() X: X“ﬁ;?diagonal ” ” ” ”
the condition number for the eigenvalue problem of M (see, e.g., [BBG, p.46]).
The main result of this section can then be formulated as follows.

33

Theorem 3.5. Suppose that the L x L matrix H generated by L steps of the look-akead

Lanczos Algorithm 2.4 is diagonalizable. and set
H=Q, HQ;!,. (3.30)
Then, forn =1,2,...,L — 1, the residual vectors of the QMR Algorithm 3.1 satisfy

Irall < lirollw(H) v+ Ten _max (w1/w;), (3.51)

=1,...,n+1

where

max_|®()]. (3.52)

En = min
d€ll,: $(0)=1 AEA(A)

Moreover, if Algorithm 2.4 terminates with pr4; = 0, thenz, = A~1b is the exact solution
of Az = b.

Proof. Using (3.26-3.28). (3.10), (3.5-3.6), and (3.1), one readily verifies that

Irall S llroll Vi + 10, max (w1 /w;),

=1,..., n+1

where 9, is given by
("t QnH,(f’:H . (3.33)

¥, = min l
:EC”
Therefore, for the proof of (3.51), it remains to show that
Un, < k(H) €. (3.34)

In the following, let n € {1.2...., L — 1} be arbitrary, but fixed. By

H «
Hp = "
- [0 }
and (3.50), we have
(e)y-1
H [(2)] = [Q”H"O "‘1‘] forall zeC". (3.53)

Recall that Hy, and therefore also H, is an upper Hessenberg matrix with nonzero subdi-

agonal elements. This implies that

(i

z € c"} = {®(H)e" | & € a1} (3.56)

34

Using (3.55-3.56), we can rewrite (3.53) as follows:

13 R L B

J, = min

:ECH

H; is assumed diagonalizable, so, by (3.50), H is also diagonalizable, and by expanding

e(lL) into any set of eigenvectors of H, we deduce from (3.37) that

in max |®(A)]. (3.58)

I, < k(H) m
dEll,: $(0)=1 AEA(H)

By (3.50) and (2.36), we have A(H) = AM(Hr) A(A), and thus (3.58) is equivalent to the
desired inequality (3.54).

Finally, we need to show that z, = A~1p, if Algorithm 2.4 terminates with pr41 =0.
For n = L and pr4+1 = 0, the least squares problem (3.6) reduces to a linear system
with coefficient matrix Q;_;H. Since A is nonsingular, by (2.36), this linear system is
nonsingular, and hence it can be solved exactly. Therefore, r;, = 0 and this concludes the
proof. [J
Recall (cf. Proposition 2.5) that, in exact arithmetic, it can also happen that the QMR
algorithm terminates with pr4; # 0. In this case, one restarts the QMR method, using
the last available QMR iterate as the new initial guess. Theorem 3.5 shows that 71
is a good choice. However, the finite termination property of the look-ahead Lanczos
Algorithm 2.4 is usually lost in finite precision arithmetic. In particular, situations where
the QMR algorithm needs to be restarted are very rare in practice.

We remark that for the “natural” scaling w; = 1, the bound (3.51) simplifies some-

what.

Next, we contrast the bounds (3.51) for QMR with the standard bounds [SS2] for
GMRES. Assume that A is a diagonalizable matrix. Then. the residuals rGMRES generated

by the GMRES algorithm (without restarts) satisfy
[rMES | < rolln(A)en, n=12,...,

where, as before, €, is given by (3.52). Hence, up to the slow growing factor vn + 1 in
(3.51) and different constants, the error bounds for QMR and GMRES are essentially the

same.
In general, simple upper bounds for (3.52) are known only for special cases. For
example, assume that the eigenvalues are contained in an ellipse in the complex plane

which does not contain the origin:
MA)YCE, O0¢E.

35

Let fi # f2 denote the two foci of £. The ellipse can be represented in the form

l/\—fxl+lx\—lesl—f%f2i<r+l>} with » > 1.

r

£={Aec

\Moreover, let R be the unique solution of

1 1Y _ Al 1A
°(R+R> hi—f 7T

The linear transformation
z=1z()\) = D-fh-h
fi—fa

maps £ onto the ellipse

1
g,:{zec |z—1l+|z+1l§r+;} (3.59)

and the origin 0 in the A-plane onto a point a € g on the boundary of £g in the z-plane.
Here, Eg is the ellipse defined as in (3.59), with r replaced by R. Clearly, 0 ¢ £ implies
R > r. Then, by applying Theorem 3.6 below, we obtain the following upper bound for

(3.52):

r*+1/r?
tn & ————, =1,2,... .
"= R*+1/R"
Theorem 3.6. Let r > 1, a € 0r, R > r. Then,
i r*+1/r®
i < =1,2,.... 3.60
pen ™o RPN S R ~ (3.60)

The upper bound (3.60) is due to Fischer and Freund [FF, Theorem 2]. Furthermore, in
[FF] it is shown that equality holds in (3.60), if r > 1 and R is not “too close” to r.

3.5. QMR for shifted matrices

In this section. we are concerned with situations where A is given as a shifted matrix of

the form
A=M+ol, MecCN*N seC. (3.61)
Obviously, one has
Kn(ro,A) = Knp(re, M) and Ka(s0, AT) = Kn(so,MT), n=1.2,..., (3.62)

and it is easily verified that the look-ahead Lanczos Algorithm 2.4 applied to 4 or M indeed
generates identical basis vectors for the Krylov subspaces (3.62), provided the recurrence

coefficients ¢, in (2.27) are shifted correspondingly. More precisely, we have

36

Proposition 3.7. Let v, and w, (respectively tn and i,) be the Lanczos vectors gener-
ated by Algorithm 2.4 applied to M (respectively A = M+ oI) with recurrence coefficients
(n» and n, (respectively én = (n + 0 and fin = na). Then, the termination index L (cf.

Proposition 2.5) is the same in both cases, and

tn =vn and wp,=wn, n=12,....L
Furthermore, forn =1,2,...,L,
AV = Vay 1 H (o), HE(0):=HY +0 [Ié‘] : (3.63)

where H'® denotes the upper Hessenberg matrix (2.32) generated by Algorithm 2.4 applied
to M.

Now suppose we want to solve, using the QMR method, m shifted linear systems
(M +0o;D)P =0, j=12,...,m, (3.64)

which differ only in the shifts ¢;. In view of Proposition 3.7. all m runs of the QMR
Algorithm 3.1 can be based on only one run of the look-ahead Lanczos Algorithm 2.4

(applied to M).
A sketch of the resulting QMR process for solving (3.64) is as follows.

Algorithm 3.8. (QMR algorithm for solving m shifted systems (3.64).)
0) Forj =1,2,...,m, set :z((,j) =0 and r((,j) =b;
Set po = |[bll, v1 = b/po;
Choose w; € CV with ||u:| = 1;
Forn=1,2,...:
1) Perform the nth iteration of the look-ahead Lanczos Algorithm 2.4 applied to M
This vields matrices Vy, Vay1, Hy which satisfy MV, = Vapr HY
2) For all j = 1,2,...,m for which ;cﬁ,j) has not converged vet :
Update the QR factorization

. ()
0oy = @) [B

of QnH,(f)(aj) and the vector 5’ (cf. (3.9));
Compute
) = 20 4 Va(RY) 1,
3) If all 29 have converged: stop.

Finally, we recall (cf. (1.9)) that, for typical application which lead to shifted systems
(3.64), the matrix M and the right-hand side b are real, and only the shifts o; in (3.64)

37

are in general complex. Obviously, the Lanczos vectors generated within Algorithm 3.8
N n = :
are all real then, as long as one chooses w; € R” and. in (2.27) real recurrence coefficients

¢n and n,. Therefore, even in the case of complex shifts, no complex quantities occur in

step 1) of Algorithm 3.8.

3.6. Preconditioned QMR

As for other conjugate gradient type methods, for solving realistic problems, it is crucial to
combine the QMR algorithm with an efficient preconditioning technique. In this section.
we show how to incorporate preconditioners into the QMR algorithm.

Let M be a given nonsingular N x N matrix which approximates in some sense the
coefficient matrix A of the linear system (1.1), Az = b. Moreover, assume that M is

decomposed in the form

M = M M. (3.65)

Instead of solving the original system (1.1), we apply the QMR algorithm to the equivalent

linear system
A'y=10b, where A' = MIYAMTY, W = MY(b— Azo), y = Ma(z —20). (3.66)

Here zo denotes some initial guess for the solution of Az = b. The iterates y, and residual
vectors rf, = b’ — A'y, for the preconditioned system (3.66) are transformed back into the

corresponding quantities for the original system by setting
ITp=2Zp +]\I{Iyn and rn. = M7),. (3.67)

For the special cases My = [or My = I in (3.65) one obtains right or left preconditioning.
respectively.
Using (3.67), the QMR Algorithm 3.1 combined with preconditioning can be sketched

as follows.

Algorithm 3.9. (QMR approach with preconditioning.)

0) Choose zo € CN and set rh = M} (b — Azo), po = [Irgll, v1 = r0/po, vo = 0;
Choose wy € CV with [Ju1|| = 1;

Forn=1,2,...

1) Perform the nth iteration of the look-ahead Lanczos Algorithm 2.4 (applied
to A');
This yields matrices Vi, Vat1, () which satisfy A'V, = Vn+1H,(f);

2) Update the QR factorization (3.8) of Q. HS and the vector t, in (3.9);

3) Compute yn = VoR; ta;

4) If y, has converged: compute 5 = To + M;y,, and stop.

38

In the case of right or left preconditioning, Algorithm 3.9 simplifies somewhat. [n
general, however, for the QMR algorithm applied to a preconditioned system, one has to
be able to compute Afl_lz, .M;Tz, _M{Iz, and .M{Tz, for arbitrary vectors z.

39

4. Lanczos methods for complex symmetric matrices

In this chapter, we consider the QMR method and related algorithms for the special case

of complex symmetric matrices. Throughout this chapter, it is assumed that 4 = AT,

4.1. The Lanczos recursion for complex symmetric matrices

As already pointed out by Lanczos [Lan4, p. 176], work and storage of the classical
Lanczos Algorithm 2.1 can be halved if 4 is Hermitian respectively complex symmetric,
by choosing starting vectors sg = To respectively so = ro. The resulting Hermitian Lanczos
method has been studied extensively (see [GVL, Chapter 9] and the references therein).
In contrast, the literature on the complex symmetric variant is scarce and restricted to the
application of the algorithm to computing eigenvalues of complex symmetric matrices (see
Moro and Freed [MF] and Cullum and Willoughby [CW, Chapter 6]). Here, we hope to
convince the reader that the complex symmetric Lanczos algorithm, especially combined
with look-ahead, is also very useful for solving linear systems.

Obviously, if one chooses so = ro and sets 7, = B in Algorithm 2.1, then all left
and right Lanczos vectors coincide. t.e., v, = wpn. Hence, Algorithm 2.1 reduces to the

following procedure.

Algorithm 4.1. (Classical Lanczos method for A = AT.)
0) Choose ry € CV with rg # 0:
Set ¢y =19, v =0;
Forn=1,2,... :
1) Compute 3, = (5,’{5")]/2;
If 3, =0: set L =n —1 and stop;
2) Otherwise, set vp = Un/Bn;
3) Compute a, = viAv,;

Set Unt1 = Avpy — anun — ﬁnvn—l-

For the special case of Algorithm 4.1, the properties (2.5) and (2.6) in Proposition 2.2

reduce to:
v{vnz{?: g:i:’z kon=12...,L, (4.1)
and
Ka(ro, A) = span{vy,va,...,va}, n=12,...,L. (4.2)
Notice that (4.1) and (4.2) just state that the Lanczos vectors v, ..., va form an orthonor-

mal basis for Kn(ro,4) with respect to the (non-Hermitian) inner product
(2,9) :=y"z, z,yec’. (4.3)

40

We remark that (4.3) is the proper (cf. Craven [Cra]) “inner product™ for compk\
symmetric matrices. Unfortunately. it has the defect that there exist vectors v € C* which
are quasi-null [Cra), i.e., (v,v) = 0, but v # 0. Consequently, as in the case of the general
classical Lanczos Algorithm 2.1. exact and near-breakdowns in the complex symmetric
Lanczos Algorithm 4.1 cannot be excluded. Indeed, in view of (2.8), an exact breakdown
occurs if, and only if, one encounters a quasi-null vector Tn.

Therefore, as in the case of general non-Hermitian matrices, in order to obtain a stable
implementation of the complex symmetric Lanczos process, one needs to use a look-ahead
variant of the method. Clearly, for complex symmetric A and with identical starting
vectors 7y = sg, the left and right Lanczos vectors generated by the look-ahead Lanczos
algorithm coincide. In particular, as in the case of Algorithm 4.1, work and storage for
the complex symmetric variant is only half of that of the look-ahead Lanczos Algorithm
2.4 for general non-Hermitian matrices.

A sketch of the resulting complex symmetric look-ahead Lanczos process is then as

follows.

Algorithm 4.2. (Sketch of the look-ahead Lanczos process for A = AT.)

0) Choose rp € CN with rg # 0;
Set v; =ro/||roll;
Set V(1) =y, DV = (V(l))Tv(l);
Setny=1,1=1,v0=0,Vy=0,p1 =1,

Forn=1,2,..

1) Decide whether to construct vn4) as a regular or an inner vector
and go to 2) or 3), respectively;

2) (Regular step.) Compute

Fngp1 = Avg = VDN T(VINT 40,
_ V(I—l)(D(l-—l))—l(V(I—l))T‘4v"’

setnipy =n+1,1=1+1, V) =9, and go to 4);
3) (Inner step.) Compute

5n+1 = Adv, — Cnvn - (Tln/Pn)vn—l
_ V(l_l)(D(l_l))—l(V(l—l))T.A'Un,

4) Compute pn+1 = ||On+1ll;
If ppy1 = 0: stop;
Otherwise, set

Unt1 = Unt1/Pn41s v = [V(I) Un41], DO = (V(l))TV(I)-

41

We conclude this section with a result which further clarifies the connectiorn of the
complex symmetric Algorithm 4.1 with the general classical Lanczos Algorithm 2.1. First.
recall that. unlike Hermitian matrices. complex symmetric matrices do not have any special
spectral properties. Indeed (see, e.g., [HJ, Theorem 4.4.9]), any complex .V x .V marrix is
similar to a complex symmetric matrix. This result entails that the classical nonsymr. rric
Lanczos Algorithm 2.1 differs from the complex symmetric Algorithm 4.1 only i.. the
additional starting vector so which can be chosen independently of rg in Algorithm 2.1. A

strict statement of this correspondence is given in the following

Theorem 4.3. Let M be a complex N x N matrix and rg € CcV, ro # 0.
a) There exists a complex symmetric N X N matrix A which is similar to M:

M = XAX™! where X is nonsingular. (4.4)

b) Set fo = X 'rg and sg = X~Tp,. Let vn, Wn, On, Bn, ¥n respectively ¥,, Gn, jn be the
quantities generated by Algorithm 2.1 (applied to M and started with o, so) respectively
Algorithm 4.1 (applied to A and started with 7). Let L denote the termination index for

Algorithm 4.1. Then, forn =1,2,...,L:
o = - 'ZJ X~ ly, = - 31
= (35 (1T

J
Proof. Only part b) remains to be proved. First, by means of (4.4), we rewrite Algorithm
9.1 in terms of 4, X v, XTw,. By comparing the resulting iteration with Algorithm 4.1

and using induction on n, one readily verifies (4.5). [

).\’Tw,,, &n=an, (Ba)?=Bava. (43)

4.2. A theorem on incurable breakdowns

As seen in the previous section, complex symmetry of a matrix is not enough to exclude
breakdowns in the classical Lanczos process. However, it is possible to use the complex
symmetric structure to derive a criterion for the occurrence of incurable breakdowns.

In the following, it is assumed that A is diagonalizable. Then (see, e.g., [HJ. The-
orem 4.4.13]), A has a complete set of orthonormal (with respect to (4.3)) eigenvectors.

In particular, ro can be expanded into eigenvectors of A. More precisely, by collecting

components corresponding to identical eigenvalues, we get

L'
o= ;p’“' (4.6)
where p; # 0, Au; = My, and, if I #J, A # Aj, u,Tuj = 0.

Here, L, = L; = L, is just the grade of ry = so with respect to A, as defined in (2.3) and
(2.4)

42

Notice that, unless all eigenvalues of A are distinct, quasi-null vectors u; may occur
in (4.6). In view of the following theorem, this is equivalent to an incurable breakdown.
Recall from the discussion in Section 2.2 that an incurable breakdown occurs if, and only

if, ny < L. in (2.15).
Theorem 4.4. Let A = AT be a diagonalizable N x N matrix and rq € CV. Then, ro
incurable breakdown can occur in Algorithm 4.2 if, and only if, the eigenvectors in the

expansion (4.6) of ro satisfy
ulu#0 forall 1=1,...,L.. (4.7)

Proof. We need to show that (4.7) is equivalent to the existence of a regular FOP of
degree L. — 1 with respect to the inner product (2.11) (where now so = To). By part b)
of Proposition 2.3, a regular FOP of degree m exists iff the corresponding moment matrix
My, = (4;4+1)j1=0,...m—1 is nonsingular. By (2.11) and (4.6), we have

pj=rg Alrg = Zp MuFw, j=01,.... (4.8)

Moment matrices are in particular Hankel matrices. By applying Kronecker’s Theorem
on the rank of infinite Hankel matrices [Gan, pp. 204-207] to Moo 1= (Kj+1)j1=01,..., 1t
follows that

rank Mo, = rank Mm =rank My, =L forall m>L -1 (4.9)

where L is the number of poles of the rational function

) [
>} = J
OEDIL=-3
=0

Using (4.8) and 3_32, M /zi%1 = 1/(z = A1), one obtains the following expansion of f:

—v)t

L. 2T
Uu; u
f(z):E:-pz—‘_’—/\’f for all |z| > max [\l (4.10)
I=1

In particular, by (4.10), L < L, with equality holding iff (4.7) holds true. Hence, in view
of (4.9), My, - is nonsingular iff (4.7) is fulfilled. This concludes the proof.
As mentioned, (4.7) is guaranteed if 4 has only simple eigenvalues. Thus we have the

following

Corollary 4.5. If A = AT is an N x N matrix with N distinct eigenvalues, then incurable
breakdowns cannot occur in the complex symmetric look-ahead Lanczos Algorithm 4.2.

43

4.3. QMR and related algorithms for complex symmetric matrices

For the QMR approach, one can exploit the complex symmetry of 4 by setting
S0 = 1o (4.11)

and basing it on the complex symmetric look-ahead Lanczos Algorithm 4.2. e stress
that, due to the lack of a criterion for the choice of sy, one usually sets sq = 7y anyvway. A

sketch of the resulting complex symmetric QMR method is as follows.

Algorithm 4.6. (QMR algorithm for 4 = 47))

0) Choose zq € CV and set ro = b— Azg, po = ||rol, v1 = 70/ po;

Forn=1,2,...

1) Perform the nth iteration of the complex symmetric look-ahead
Lanczos Algorithm 4.2. This yields matrices V,, V41, H,(f)
which satisfy AV, = Va4 H:

2) Update the QR factorization (3.8) of Q. H® and the vector t, in (3.9);

3) Compute zp, = 2o + Vo R ta;

4) If r, has converged: stop.

Due to the savings for the complex symmetric Lanczos Algorithm 4.2, work and storage
requirements for Algorithm 4.6 are also roughly halved, compared to the general QMR
Algorithm 3.1. In particular, Algorithm 4.6 only requires one matrix-vector product 4 - v
per iteration, as opposed to the two products 4 - v and A7 - w per iteration for the QMR
approach for complex nonsymmetric matrices.

Obviously, the complex symmetric QMR Algorithm 4.6 can also be used in conjunction
with a preconditioner (cf. Section 3.6). Again, work and storage per iteration is roughly
halved. provided one chooses a complex symmetric preconditioner A decomposed in the

form
M= MM, where M, =MT (4.12)

in (3.65). Note that standard techniques, such as incomplete factorization [MvdV] or
SSOR preconditioning (see, e.g., [FN1]), applied to 4 = AT generate complex symmetric
preconditioners which satisfy (4.12).

Finally, we remark that a simpler variant of the complex symmetric QMR method.
based on the classical Lanczos Algorithm 4.1 rather than the look-ahead Lanczos Algorithm
4.2, is discussed in detail in the author’s paper [Fred].

In analogy to the complex symmetric variant, Algorithm 4.1, of the classical Lanczos
Algorithm 2.1, the general BCG Algorithm 3.3 reduces to a scheme which requires only
half the work and storage, if the starting vectors are chosen as in (4.11). The resulting

procedure is as follows.

44

Algorithm 4.7. (BCG for A = A7)

0) Choose zo € CV;
Set qo =19 = b — Arg;

Forn=1,2,... :

1) Compute 6, =rX_rn_1/ql_,Aqn—1 and set o = Tp-1 + éngn-1;
Set rp =Tpnoy — 6nAqn-1;

2) Compute pp =rirn/rT_ro_y;
Set gn = Tn + pngn-1;

3) If rn =0: stop.

However, as for the complex symmetric Lanczos Algorithm 4.1, breakdowns in Algorithm
4.7 cannot be excluded. Indeed, both kinds of breakdowns described in Section 3.3 can
occur in the complex symmetric BCG method.

Closely related to the BCG method for general linear systems (1.1) is the conjugate
gradients squared algorithm (CGS) due to Sonneveld [Son].

Algorithm 4.8. (CGS for general A.)

0) Choose zo € C" and so € CV, 5o # 0;
Set pg = ug =r9 = b — Azy and compute .sg"ro.

Forn=1,2,... :

1) Compute ay = sirr_1/sT Api_1 and set qx = ux—; — axApk-1;
Set Tk = Ty + ax(ur-1 + q&) and rp = re—1 — ar A(ur-1 + gx);

2) Compute B¢ = sgrk/sg"rk_l;
Set ux = & + Brqx and pr = ux + 3i(qx + BipPr—1);

3) If r, =0: stop.

Notice that, like general BCG, CGS has a second unspecified starting vector so. However.
unlike BCG, even with the special choice sq = 75, CGS cannot exploit the complex sym-
metry of A. In particular, for A = AT, Algorithm 4.8 requires per iteration about twice

as much work as the QMR and BCG Algorithms 4.6 and 4.7.
Finally, as a special case of the general connection [Son] between the CGS and BCG

approaches, we have the following
Proposition 4.9. Let A = AT, ry = r&° = r§% and, in Algorithm 4.8, so = ro. Then,

forn=20,1,...,
rBG = 3 (A)ry and 1S = (8,(4))’re

for some ®, € II, with $,(0) = 1.

45

5. CG-type algorithms and polynomial preconditioning for shifted Hermitian

matrices

In this chapter. we consider CG-type methods for the solution of linear systems (1.1) with

coefficient matrices of the form
A=T+iol where T =TH isHermitian, o €R. (5.1)

Clearly, by multiplication of the right-hand side b or the unknown vector z by e~ the
more general case (1.4) can always be reduced to (5.1). Although our main interest is in
non-Hermitian A, we include the case ¢ = 0 and assume that 4 = T is nonsingular then.
This guarantees that A is always nonsingular, and the exact solution of Az = b is denoted
by z. = A~'b. Most of the results in this chapter are taken from the author’s paper [Fre3]

on shifted Hermitian matrices.

5.1. Three CG-type approaches

We will consider three different CG-type approaches. Recall (cf. Section 1.2) that, for
shifted Hermitian matrices, it is possible to have an ideal CG-like method with iterates
characterized by the minimal residual (MR hereafter) property (1.3). The first approach
we study is the MR method based on (1.3). The second scheme is the GAL method
which aims at computing approximations z, defined by the Galerkin (GAL hereafter) (or

orthogonal error [FM2]) condition
vH(b— Az,) =0 forall v € Ku(ro.d), In €0+ Rn(ro,4). (5.2)

Note that, for Hermitian positive definite A, this method is equivalent to the classical CG
algorithm (see. e.g., [PS]). While MR and GAL are standard approaches for non-Hermitian
matrices, the third method we propose is less conventional. Its iterates are defined by the

minimal Euclidean error (ME) property

lz. — zall = min llze — 2|, Tn €20+ Kn(4frg, A). (5.3)
T€ro+Kn(AHrg, A)

Note that for the Krylov subspace in (5.3) one has the identity
Kn(Afrg, A) = AP K, (10, 4), (5.4)
since matrices (5.1) are normal and thus
AAH = AHA (5.5)

46

We remark that MINRES and SYMMLQ [PS] are numerically stable implementations
of the MR and GAL methods, respectively, for real symmetric matrices 4. If A is indefinite,
a Galerkin iterate satisfying (5.2) need not exist for every n. Paige and Saunders resolve
this problem in SYMMLQ by actually working with a sequence of well-defined auxiliary
vectors from which the existing Galerkin iterates can then be computed in a stable manner.
The ME approach (5.3) is a generalization of Fridman’s method [Fri] for real symmetric
matrices A. However, the algorithm he proposed is numerically unstable (see [Frel, SF]
for an explanation of the instability and a simple remedy). Fletcher [Fle] showed that the
sequences of the Fridman iterates and the auxiliary vectors generated by SYMMLQ are
mathematically equivalent. Therefore, as a by-product, SYMMLQ also yields a numerically
stable implementation of Fridman’s method.

We now turn to the derivation of algorithms, modeled after SYMMLQ and MINRES,
for the actual computation of the iterates defined by (1.3), (5.2), and (5.3). The main
ingredient is the Hermitian Lanczos algorithm [Lanl] applied to the Hermitian part T of

(5.1) and with ry as starting vector.

Algorithm 5.1. (Hermitian Lanczos method.)
0) Set ©; =rg, vo =0;
Forn=1,2,... :
1) Compute Bn = ||Ta];
If3, =0:set L=n~-1,vr41 =0, and stop;
2) Otherwise, set vy = Un/fBn;
3) Compute ay = vITvn;
Set tp41 = Tvp — nUn — Bn¥n-1.

Notice that Algorithm 3.1 is just a special case of the classical Lanczos Algorithm 2.1
(applied to T and with starting vector sy = 7o). However, unlike the general Algorithm
2.1, the Hermitian Lanczos process cannot break down prematurely. In exact arithmetic.

Algorithm 5.1 stops after a finite number of steps with termination index
L =dim Kn(ro,4) =dim Kn(ro,T). (5.6)

Moreover, with V, defined as in (2.1) and

fa; B 0 o 07
Bz a o T
To=|g . " " 0]l (5.7)
g
L 0 0 Bn anl

for the Hermitian Lanczos method, the properties (2.5)-(2.7) listed in Proposition 2.2 now

reduce as follows:

VEV, = I, (5.8)
TVa=VoTo+[0 0 -+ 0 Opy1], (5.9)
Ka(ro,A) = Kn(ro, T) = span{uvy, ve,... ,Un} (5.10)

Here and in the sequel, it is always assumed that n € {1,2,... ,L}. Note that, with

T, +i0l
H() = | =" n 11
n [ﬂn-ﬁ-le:] (5)

and by adding oV, to both sides of (5.9), we obtain
AV, = Vo H. (5.12)

Next, we rewrite the MR, ME, and GAL conditions in terms of V, and H,(f). In order

to match the notations used in Chapter 3, we set pg = 31, and thus
ro = pov1, po =P = |[roll. (5.13)

Proposition 5.2.
a) .’EMR =1I9 + sz;c‘m where z;?m is the solution of the least squares problem

rmn ”p 0€) (nt1) _ H,(f)::H. (5.14)

b) zME = 7o + AHVnz;Y'E where z;}’E is the solution of

poel™ = (HENHH) . (5.15)
c) 2GAL = 14 + V254 where zGAL s the solution of

poel = (Tn +10l,)z. (5.106)

Moreover, if o = 0 and T}, is singular, then no Galerkin iterate satisfying (5.2) exists.
d) e ¥R = o }E = AL = z,.

Proof. First, note that, by (5.13) and (5.8),

VHro = peel”, j=12,...,[+1. (5.17)

Using (5.12) and (5.8), we obtain
VHAH AV, = (HYHHO, (5.18)

48

a) From (5.13) and (5.12), 7x can be represented as in (3.3). With (3.3) and (5.8), it
follows that the MR property (1.3) is equivalent to (5.14).
b) (5.4), (5.10), and (5.5) imply that

Ipn =T9 + AfVz, =1 - ATA V,z,, with =z, €C"

The minimization property (5.3) is equivalent to
0=0vA4(z, —zn) =0fir, forall ve Ku(ro,A).

By (5.10), it suffices to consider these equations for v = v;, 7 = 1,...,n, and it follows

that z, is the solution of
VHr = VHEARA V, 2

which, by (5.17) (for j = n) and (5.18), is just the linear system (5.13).
For c¢), we similarly obtain that z, = z¢ + Va2n satisfles (5.2) iff zn solves the linear

system
po€1 = VnHVn+1H,(,°)Z

whose coefficient matrix, by (5.8) and (5.11), is T, + iol,. If 0 = 0 and T, is singular,
the linear system (5.16) could have a solution only if it was consistent. Using the fact that
T, -, is nonsingular then and B, > 0, one easily verifies that this cannot be the case.

d) In view of (5.6), Ay = K(ro,A) is an A-invariant subspace and. since 7o € Ny,

we conclude that
ze—zo=A"rg€e ATNK; = K; = ALK,

On the other hand, z. trivially satisfies (1.3), (5.2), and (5.3), and it follows that z1, = z.
for all three methods. [J

5.2. Practical implementations

First, consider the MR approach. By comparing (5.14) with (3.6), we conclude that, for
shifted Hermitian matrices (5.1), the MR and the QMR methods are identical, provided
one sets §,, = In4 in (3.6) and the QMR Algorithm 3.1 is based on the Hermitian Lanczos
Algorithm 5.1. Therefore, an actual MR algorithm for matrices (5.1) can be obtained as a
special case of the implementation of the general QMR method described in Sections 3.1
and 3.2. Here, we present a slight modification of the resulting implementation which will
help to reduce complex arithmetic.
Since the Lanczos matrix T, in (5.7) is real symmetric, it follows that

(H'(‘C))HH'(:) = T: + UzIn + 18721-{—16"83

49

is a real matrix. Consequently, one can choose the unitary matrix @, in a QR decompo-

sition { ,

H =QF %"J (5.19)

of the complex matrix (5.11) such that the upper triangular factor R, is real. Using
standard matrix calculus, one verifies that a factorization (5.19) with real R, can be

constructed with a unitary matrix @, of the form

Gn—l 0 Gz 0 G1 0
n=GnD, Dny---D D D 5.20

with complex diagonal matrices
D; =diag(1,..., 1,e"%,1,...,1), ¢, €R,

1
J
and real Givens rotations
Iy 0 0
Gj = 0 cj s;|, with ¢;€C, s; € C, c?-{-s?:l.
0 —.Sj Cy

Recall that for the QR factorization in Section 3.2 we have used slightly different unitary
matrices Qn (cf. (3.12) and (3.13)). Also, note that, in contrast to the Lanczos matrix

generated by the look-ahead Lanczos process, (¢) is now a scalar tridiagonal matrix.

Hence, the upper triangular R, in (5.19) is of the form

5, e 63 0 o 0]
0 (52 €3 . :
R=| & 0 (5.21)
“ " T T en
: . €n
R

with scalar entries 8k, €x, O (cf. (3.14)). Moreover, the factorization is easily updated

from the one of the previous step n — 1 by simply setting
Bp = Sn—2n, €n = Sn—1Qn + Cn-1Cn-2Bn COSPn_1,

hn = _sn—lCn——2/8ne_iwn—l + Cﬂ—l(a" - ia)’ S" = !h"|' (522)
on _ [BafhalH ha #0,
0 if h,=0,

and

b= 1/82 + P21, cn=08n/bn, Sn=Pnt1/bn. (5.23)

Based on the QR decomposition (5.19), one then proceeds as in the derivation of the
implementation of the QMR method in Section 3.2. We omit the details and only state

the resulting algorithm.

50

Algorithm 5.3. (MR method for matrices (5.1).)
0) Choose z¢ € CY andset v=>b— Arg, vo = po =p-1 =0,
By=f=|lvll,co=co1=1,s0 =51 =po =0
Forn=1,2,...:
1)If B, =0, stop: Tn-1 solves Az = b;
Otherwise, compute
2)vp =0/fBn, an = v,fITvn,
v="Tvp — antn = Bava-1, Bas1 = V]|,
and then 85, €n. 6n, Pn, Cn, Sn using formulas (5.22), (5.23);
3) pn = (Vn — €nPn-1 — 6nprn-2)/bn,
Tp = Tn-1 + TaPn With T, = cpTpe'¥",

7.;n+1 = —Sn’lznel;" .

We now turn to the ME and GAL methods. First, note that the characterization
(5.2) of the GAL iterates is just a special case of the Galerkin type condition (3.33) (with
sg = Tp). Hence, as a special case of the results in Section 3.3 on the connection between
QMR and BCG, we can obtain a stable implementation of the GAL approach based on
the MR Algorithm 5.3. Instead, we now derive an implementation of the ME approach
and show how the GAL iterates can be recovered from the ME method.

With (5.19) and by setting

Yo = [y1 Y2 o yn]) = AHVnR;Is
it follows from part b) of Proposition 5.2 that

;rnME = 10 + Youn where u, is the solution of B1e; = RZ;u.
Similarly, using that, by (5.11),
T
£ oty = ()] [§]

n

and with (5.19) and (5.20), one deduces from (5.16) that zGAL exists if, and only if, cn # 0
and then
2O = 2q + Vailn, Yo := VaQI_, diag(1,1,...,1,e""),
where i, is the solution of
Bieq = RT diag(1,...,1,cn) &

Clearly, un and i, differ only in their last elements 7, and 7j,. Moreover, with (5.12),
(5.19), and (5.20), one easily verifies that Y, is identical to Y, up to its last column §n.
Hence, we obtain the recursions

oME = t¥E 4 nayn and,if o #0, AL = zME 4 5, §n (5.24)

(cf. [PS]). The resulting implementations can be summarized as follows.

o1

Algorithm 5.4. (ME/GAL method.)
0) Choose z¢ € C" and set r(‘)”E = rg’u‘ =rg,v=b- Azg, vo =y = 0.

Bi=vl,m=-lco=coi =138 =51 =po=7n-1 =0:
If 8, >0, set vy =v/31;
Forn=1,2,...:

1) If 8, = 0, stop: r)'E = 2G4 = z, solves Az = b;
Otherwise, compute
2) ap = vETo,,
v=Tvn — anty - Invn-1, A3n+1 = ”v”:
and then 8., €, én, 6n, Pn, Cn, S using formulas (5.22), (5.23);
3) Jn = Cif“ (—=$n-1Jn-1 + Cn—1Vn)
and, if 6, # 0 and the Galerkin iterate is desired,
xSAL = x;}[—El + nfn with 7, = _(ennn—l + 9n’7n—-2)/5n{
4) Set vu41 = v/3n41. if Bry1 >0, and vny1 = 0 otherwise,
Un = Cn¥n + Snln+1,
ME = o ME 4 nayn with nn = —(€nn-1 + 0nnn-2)/bn.

The finite termination property of the Lanczos algorithm does no longer hold in the

presence of roundoff error (see, e.g., [GVL, pp. 332]), and the stopping criterion stated in
Algorithms 5.3 and 5.4 is not useful in practice. Instead, one should terminate the iteration
as soon as ||ra|| is sufficiently reduced. Note that, similar to the real symmetric case

[PS), ||ral| can be obtained without computing the vector ry itself by using the following

identities:
M
IFME| = /02, 62, +n26% ;.
Hr;}!R” = ”7'0”8152 ce 0 Sa,
“rSAL” = 73n+lt3n—177n—1 + Cn—-]ﬁnei\;“n l

Finally, consider linear systems Az = b with coefficient matrices A of the more general

class
A=T+ioD where T=TH" isHermitian, o €R,

with D a Hermitian positive definite N x N matrix. Then, Az = b is equivalent to the

linear system

A'z' = where A =D~V2AD™Y? ' =DY%*z, ¥ =D7'/%,

whose coefficient matrix A' is now of the form (5.1), so that we can use Algorithm 5.3
or 5.4 for its solution. Note that one never needs to form A’ and b explicitly, and it

52

is straightforward to rewrite both Algorithms 5.3 and 5.4 in terms of the original linear
svstem Az = b. We omit the details and only state that the resulting MR. ME. and GAL
algorithms generate iterates which are characterized by the properties (1.3) (with || || =
| llp-1 and Kno(D~'rg, D1 A4)), (5.3) (with || || = || |[p and Kn'(D"AHD"]ro,D'lA)).
and (5.2) (with Kn(D~ro, D™! A)), respectively.

5.3. Comparisons with other implementations. Operation counts

Several authors [JY, Sid, AMS] have proposed algorithms for the computation of the MR
and GAL iterates (1.3) and (5.2), respectively. However, most of these implementations
(like Orthomin and Orthores in [JY]) are modeled after variants of the conjugate residual or
conjugate gradient algorithm for Hermitian positive definite matrices. It is well known [PS,
Cha, SF] that, for Hermitian indefinite A, these approaches are numerically unstable and
can even break down. For instance, for the GAL method this occurs whenever a Galerkin
iterate does not exist (cf. [PS] and part c) of Proposition 5.2.). The same stability problems
can arise for the non-Hermitian matrices (5.1) if ¢ is small. Hence, all these algorithms
derived directly from the positive definite case are stable only for matrices (5.1) which
fulfill additional requirements such as T positive definite or |o| bounded away from 0.
Note that these two conditions are not satisfied for most of the applications mentioned in
Section 1.3.

Here, we consider only implementations which are numerically stable for the general
class of matrices (5.1). Among the proposed algorithms in the literature merely the Or-
thodir approach [JZ, AMS] for the computation of the MR iterates has this property. This
algorithm can be stated as follows. -

Algorithm 5.5. (Orthodir MR implementation.)
0) Choose x4 € CV and set sy =19 = b — Az,
go = Asg, 51 =¢-1 =0, v =0;
Forn=0,1,...:
1) If g, =0, stop: z, solves Az = b;
Otherwise, compute
2) An = lejrn/”anP;
Tn41 = Tn + AnSn, Tntl = Tn — An@n;
3) tn = g1 Tqn/llgall? and, if n > 0, va = ||gall?/llgn-1I%,
Snt1 = dn — (fia +10)Sa — UnSn—1,
In+1 = Tqn — nGn — Vngn-1.
We remark that ¢, = As, and that the search directions s, are up to scalar factors
identical to the vectors p, in Algorithm 5.3.
Next, the results of operation counts for Algorithms 5.3, 5.4, and 5.5 are presented
in Table 5.1. Although we solve complex linear systems, most of the scalars (like a, and

53

3, in the Lanczos step of Algorithm 3.3 and 5.4) occurring in the computations are real.
Moreover, on some machines. implementations in real arithmetic are more advantageous.
Therefore, we compare work and storage in terms of real quantities. Listed are the number
of matrix-vector products T - v, v € RY. the approximate number m of additional real
multiplications per iteration, and the number s of real vectors (of length V) to be stored.
The computation of inner products often constitutes a bottleneck on modern computers.
For this reason, we also give the number dp of dot products z -y, 7,y € RY per iteration.
Finally, notice that — based on the simple observation stated in Proposition 3.6 below
— work and storage for the MR and ME/GAL methods can be significantly reduced if
the Hermitian part T of the matrix (5.1) is real. This case occurs frequently in the cited
applications, and we included the corresponding operation counts in Table 5.1.

Proposition 5.6. Let T be real and assume that ro = b— Azo € RN. Then, all the vectors
vn, n = 1,2,..., in Algorithm 5.3 and 5.4 are real. In addition. for the MR method, all

search directions p, are real vectors.

Note that often the right-hand side b is a real vector, and then the standard starting
guess ro = 0 guarantees that ro is real. In the general case b € CV and if ¢ # 0, the
condition ro € RN can always be fulfilled by choosing the starting vector zo = rgl) + i.rgz)
appropriately, e.g., r‘()z) = 0 and xgl) = Imb/o. However, such a strategy might not be

desirable, if one already knows a good approximation zo for the exact solution of Az =b.

T v m dp s

MR Algorithm 5.3 2 18N 4 12
ME/GAL Algorithm 5.4 18N 10
Orthodir Algorithm 5.5 2 26N 8 14

(&)
-

If T and rq are real:

MR Algorithm 5.3 1 9N 2 7
ME/GAL Algorithm 5.4 1 13N

o
-1

If A=T and rg are real:

MINRES [PS] 1 8N 2 6
SYMMLQ [PS] 1 8N 2 5

Table 5.1. Work per iteration and storage for the various algorithms. Listed are
the number of matrix-vector products T-v, v € RY . the approximate number m
of additional real multiplications, the number of real dot products dp, and the

number s of real vectors to be stored.

54

To explain the numbers given in Table 5.1, a few more comments are necessary. For
the ME/GAL algorithm, we have assumed that the Galerkin iterate is, if desired, only
computed in the very last step of the iteration. Furthermore. in order to reduce the
computational work, note that. in the MR Algorithm 5.3, one computes the vector d,pn
instead of p,. Similarly, in part 4) of Algorithm 5.4, the vector y, itself is never needed
and, hence, 7,yn is generated directly. Moreover, using fast Givens rotations (e.g. [GVL.
p.158]), we compute the rescaled vector f,Jn instead of §, in step 3) of Algorithm 5.4.
Here, fn := 1/(ca—1cos@y) for the case that sp—1 < cn—; and [singa| < | cos ¢n], and fr
is defined correspondingly for the remaining cases. Note that then only 4n real multipli-

cations are needed for updating fnyn from fan_1¥n-1 and vy,
We conclude this section with a few further remarks. First, Table 5.1 clearly shows

that the MR implementation stated in Algorithm 5.3 is less expensive than the Orthodir
Algorithm 5.5. For real symmetric linear systems, Algorithm 5.3 and 5.4 reduce to MIN-
RES and SYMMLQ [PS], respectively. Notice that, for the case of complex matrices
(5.1) with T and rq real, Algorithm 5.3 and 5.4 require only little extra work and storage
compared to MINRES and SYMMLQ. Finally, consider real linear systems with matrices

A=I-S where S=-57 isreal and skewsymmetric, (5.25)

(or, equivalently, A' = iA =T +il with T = —i§ = TH if rewritten in the form (5.1)).
Concus, Golub [CG}, and Widlund [Wid] were the first to propose a Galerkin type method
for the class of matrices. It can be shown, that their algorithm is equivalent to the Galerkin
part of Algorithm 5.4 for the special case (5.25). Also, note that, in [Frel. Sto}, we have
investigated an Orthodir type implementation of the ME approach for the class 4 = I-S.
The first MR-type algorithm for the family of matrices (5.25) was proposed by Rapoport
[Rap] (see also [EES, Frel] for different implementations). :

5.4. Error bounds

In this section, we derive error bounds for the MR and ME methods. Let a < Amin(T) and
3 > Amax(T) be given bounds for the extreme eigenvalues of T. Therefore, all eigenvalues
of A are contained in the complex line segment S := [a + io, 8 + io]. For the rest of
this chapter, we assume that in the Hermitian case 0 =0, A =T is positive definite and

0 < a < . This guarantees that 0 ¢ S.
By the standard technique, using

Kn(ro,A) = {¥(A)ro | ¥ € Moy} (5.26)

and an expansion of ry into orthonormal eigenvectors of A (recall that, by (5.5), A is

normal!), one obtains from (1.3) the estimate

MR ‘ _
IR /llroll <, min max |1 = AT (5.27)

35

Similarly, with (5.4), (5.26), we deduce from (5.3) that

. —zME - < i = APT)) 5.9
Nz — 225/ llze — 2ol] < o oin max |1 = [AF (A (5.28)

With the linear transformation
2(ioc — A

o, (5.29)
which maps S onto the unit interval [—1, 1], the right-hand side of {5.27) can be rewritten

in the form

z=z(A) =

E, = i)
(En(a) :=) sen™B L Dax |2(2)] (5.30)
where
_2io+fB+ta
ar= = ¢ 1) (5.31)

Furthermore, using the identity

4 AP =(B-a)(z(3) ~a)(z(}) — @), €S,

(note that z(A) = z(\) for all z € §) one easily verifies that the upper bound in (5.28) is
just Ef,r_zl(a) where

EN(g): = min ¢ ;
(B:0(a): =) min - max 12(:)] (5.32)

M.(a):={® €I, | ®(a) =®(a)=1 and,if a€R, &(a)=0}.

We now turn our attention to the two approximation problems (5.30) and (5.32). It

will be convenient to represent a in the form

a=a(y) = a(R)cos v + ib(R)siny, R>1, 0<uv<2m, (5.33)
1 1 101
o(R):=5(R+) b(R):=5(R-35)

clearly, this is possible for any a € [—1,1]. For fixed R > 1, we set Br = {a = a(v)|0 <
i < 27} and remark that Br = 9€g just describes the boundary of the ellipse Er (defined
as in (3.59), with r replaced by R) with foci at £1 and semi-axes a(R), b(R).

First, we consider the complex approximation problem (5.30). Its solution is classical
for the case of real a where T,,(z)/Tn(a) is the optimal polynomial. Here, T, denotes the
nth Chebyshev polynomial which, by means of the Joukowsky map. is given by

T.(z) = -;—(v" + vi")’ z= %(v + -11;) (5.34)

For purely imaginary a, the extremal polynomials were found by Freund and Ruscheweyh
[FR], but for general complex a the solution of (5.30) is not explicitly known. The following
upper bound for the optimal value of (5.30) will be used in Section 5.5.

56

N

Theorem 5.7. Let R>1andn =1,2,.... Then,

1
—_— E, <
<Ena) € 1

n
w
(&1
S

2
& mriEe €8 5

Proof. The lower bound follows immediately from an inequality due to S.N. Bernstein (e.g.
[Mei, Theorem 74]). The upper bound is just the special case r = 1 of Theorem 3.6.]

We remark that, for fixed R > 1, the upper bound in (5.35) is optimal, with equality
holding for the two real points of Br. The optimal lower bound is unknown, but it is
conjectured to be 2/(R™ + R"?) which is just the optimal value of (5.30) for the two

purely imaginary points of Bg (cf. [FR]).
Next, we study the approximation problem (5.32), and we will show that it is closely

related to the classical Zolotarev problem

1 z" =l _ g = e .
JMin - max 2" + nnz (2), neR, n=23, (5.36)

It is well known that there always exists a unique best approximation ¥,(z;7) for (5.36)

and the corresponding polynomials
Zo(zin) =28 +nz" " = U, (5m), n€R, n=23,...,

are called Zolotarev polynomials. We refer the reader to [CT] for a detailed study of these

polynomials. Note that

z+7n
1+ ||

Za(zin) = 2171+ [9])™ Tl) for In| < tan® - (5.37)
¢ n

and for the remaining values of there are representations of Z,(z;7) in terms of elliptic

functions.
Theorem 5.8. Let a = a(y) € Br, R > 1, n = 2,3,... . Then, there exists a unique
optimal polynomial $,(z;a) for (5.32). If = jx/(n — 1) with an integer j # Omodn — 1,
then Toos(2) 5
@n . = _i. (r) — .,
(z;a) T 1(a) and E)”(a) R 1 1/R
Otherwise,
Zn(zi7)
P.(z;0) = ——= 5.38
(si0) = 3o (5.38)
where n = n(a) is the unique solution of
ImZ,(a;n) =0 (respectively Z,(a;n) =0, if a€R), 7n€R. (5.39)

o7

In particular, if ¢ satisfies for some integer j # Omodn

. . 2w
Jjm n sin® &

— cos 1= — , ith <tan’ —, ne€R. 5.40
cos Y = cos R wi In| < tan o (5.40)
then s+
$.(za) = T"(1~+ l')l) nd E((a) 2 (5.41)
n(z;0) E ————— a n = =7 .
T,,(a+") pr+1/p
1+ [n]
with p defined by
1 WRE
E(p + ;) =a(R) - In| (R) p> 1. (5.42)

1+ 7l a(R) + signn cos 2%’
Proof. Writing & € I,(a) in the form &(z) = 1 — (2 — a)(z — @)¥(z), ¥ € M,y
one recognizes (5.32) as a linear Chebyshev approximation problem, for which, since a ¢
[-1,1], Haar’s condition is satisfied. Standard results from approximation theory (see,
e.g., [Mei]) guarantee that there always exists a unique optimal polynomial ®,(z;a) for
(5.32). Moreover, because of the symmetry of the problem with respect to the real axis,
&, is a real polynomial, and ®,, is characterized by assuming its maximum absolute value
at at least n points in [—1, 1] with alternating signs. This alternation property implies that
&, has degree n — 1 or n. First, consider the case n — 1. Since the scalar multiples of 7, _;
are the only polynomials of degree n — 1 with an alternating set of length at least n, we
conclude that ®.(z;a) = Tu-1(2)/Ta-1(a), and, in view of @, € [I.(a), this case occurs
iff T,_1(a) € R and a ¢ R. With (5.33) and (5.34), one readily verifies that these are just
the points a = a(¢) with ¥ = jr/(n — 1), j # Omodn — 1. Now we turn to the case
that &, is of degree n. Since the optimal polynomials for the Zolotarev problem (5.30)
are characterized by the same alternating property as ®,, it follows that @, is of the form
(5.38) with a suitable n € R. In order to guarantee ®, € II,(a), n must be the solution of
(5.39).

Now, let n € R, |p] < tan® =. With (5.37) and (5.34), we conclude that a satisfies

(5.39) iff ‘ ' '

(a:=) la':_l:;l = %(p + i—)cos ’7” + %(p - %)sin % (5.43)
for some p > 1 and some integer j # Omodn. By using the representation (5.33) of a and
by equating the real (imaginary) parts of (5.43), one arrives at two real nonlinear equations
for the unknowns cos ¢ and p, and a straightforward, but lengthy calculation shows that
the solutions are given by (5.40) and (5.42). Finally, note that the first identity in (5.41)

is a consequence of (5.38) and (5.37); the second one follows from E&')(a) = 1/|T.(a)| and
(5.43). O

For general a, (5.38) and (5.39) lead to rather complicated and not very useful formulas
for E,(f)(a) in terms of elliptic integrals. Next, we derive simple bounds for this quantity.

58

Theorem 5.9. Let R>1andn=2.3,.... Then, fora =a(¥) € Bg:

2 - b (R)| fae1 (D) + 0a(BNfa(O)] /. pim ‘5
R +1/R" < Ei'(e) = 2 ban—1(R) + b1(R) fan-1(¥) (_' B (a)) (54
where
1 . 1 sin(jv¢)/siny if siny # 0,
b(R) = 5(R — 7). fi(¥) = {(*1)(:'—1):]- i = Ir.

Both bounds in (5.44) are attained if = jw/n, j # Omodn. In addition, the upper
estimate is sharp for Y = j=/(n—1), j # Omodn — 1.

Proof. Duffin and Schaeffer [DS] showed that for any real polynomial of degree at most
n, |®(z)] € M on [-1,1] implies |$(a)] < M(R™ + 1/R")/2 for all a € Br. Application
of this result to ®,(z;a) yields the lower bound in (5.44). In order to obtain the upper
bound, we consider polynomials ®(z) = vTn(z) + §Tn-1(2) € Hn(a) with v,6 € R. With
(5.33) and (5.34), one readily verifies that ® € II,(a) iff v and ¢ satisfy

(R™ + 1/R™) cos(ny) (R"‘1+1/R""1)cos(n—1)w] [7] _ ItQ}
(R* —1/R™)fa(¥) (R* =1/R* Nfaur(y) | |6 0]

A routine calculation shows that this linear system has a unique solution and that

N — — (r)
max 18] = hl+18] = BY(@)

Finally, the statements on the sharpness of (5.44) follow from Theorem 5.8. [
Note that the bounds in (5.44) are asymptotically optimal. and we have the following

Corollary 5.10. Let R > 1 and a € Bg. Then,
1

: (r I/n _ 1 (r) In __

nhm (E,(a)) n11_{n (B, (a)) 7

The typical behavior of the optimal values of (5.30) and (5.32) and the bounds stated
in Theorems 5.7 and 5.9 is illustrated in Figure 5.1. For fixed R = 1.103... and n = 30,

the four curves

2
<—* < g0 < g(n — <y <7w/2,
En(a) < iR < E{7(a) < B{7(a), a=a(y)€eBr, 09 <7/

are plotted. Note that E,(a) = E.(@) = E.(—a) (and analogously for E{(a)), and hence
it suffices to consider only the points a in the first quadrant.

59

1.0

08 I~

06

04

0.2 -

01F

0.05 ! 1 ! B 1 I L L]
0 10 20 30 40 50 60 70 80 90

Y /Degree

Figure 5.1. The optimal values E(a) and Eir)(a) of the approximation prob-
lemns (5.30) and (5.32) are shown for the case k¥ = 30 and with a = a(¢) moving
along the quarter of the ellipse Br, R = 1.103... . The lowest curve is E3¢(a).
The other three curves display Eg(r,)(a) and its lower and upper bounds as stated

in Theorem 5.9,

The following theorem summarizes our results on error bounds for the MR and ME
methods. For the special case of matrices 4 = T + i with positive definite Hermitian

part T, we also derive an error bound for the GAL method.

Theorem 5.11. Let a < Amin(T) and 8 > Amax(T) be given, and assume that 0 < a < Jé)
ifo =0. Let a be given by (5.31), and let R be the unique solution of

2 2 2 2
(R+—)\/ﬂ ”ﬂf;ﬂ’ T R>1. (5.45)

Then, forn=1,... :
a)

|16 — Az 2

.t _<Ea) S ==——5. 5.4

TR TSy (5-46)
b)

[EN |

||z« — zol] nt+1(a) = szrlx(a)- (5.47)

60

c) If T is positive definite, then

. - z0AL oKk — +=)? 2 3

lze 2 llr |4 R where k= 2. (5.48)
[lze = zol|T 402 + a?(\ /K + 7;)2 R*+1/R" a

Proof of part ¢). We set e, = =, — 2, and p; = elfTVe,, j = —1,0.1. With (5.1) and

since r, = en, one obtains
eHr, =y +iopy and ||rall%-i = 1 +0%poy. (5.49)

n

Now let u € 7o + Kn(ro, A) be arbitrary. By (5.2), (u — zn)7, =0, and therefore

H
eHry = (2. — u)fr, = (TI/Z(I. - u)) (T~V%r,). (5.50)
By application of the Cauchy-Schwartz inequality to (5.50) and with (5.49), we arrive at

W+ 0%l < Nlzw = ully (s + 0P un). (5.51)

Next, recall that, by the Kantorovich inequality (e.g. [Hou, p. 83)),

1 1\

sPuypoy < pd where s:= (§(ﬁ+ ﬁ)) . (5.52)

Using (5.52) and the estimate p1/p—1 > Amin(T?) = a?, we obtain from (5.51)

1+0%u_1/m a? +o?
2 2 -
w1 < |z — ull7 T+ 02251 /i, <|lz. —ull? Pl (5.53)
Since u € 7o + Nn(ro, A) is arbitrary, ||z. — ul|r in (5.53) can be replaced by

min [lze —ullT = min [|®(A)eo]|T- (5.54)

u€ro+HKn(ro,A) $ell,: $(0)=1
By expanding e into orthonormal eigenvectors of the normal matrix 4 and with (5.29),

(5.30), (5.31), and (5.35), we obtain

min_ [|18(A)eollr < lleollr Ena) < lleolir mr—r (5.55)

$€Ell,: 6(0)=1 R™ +1/R™

Finally, combining (5.53)—(5.55) yields the desired bound (5.48). [

We remark that, for the special case of o = 0, (5.48) and (5.46) reduce to the usual
error bounds (see, e.g., [Sto]) for the classical conjugate gradient and conjugate residual

algorithms.

61

In Theorem 35.11, we excluded the case of Hermitian indefinite matrices A = T. Error
bounds for this case can be found in Chandra [Cha] for the MR method and in SF, Frel,
Szy] for the ME method.

Finally, we note that for the GAL method there are no satisfactory error bounds for

the general class of matrices (5.1).

5.5. Polynomial preconditioning

Polynomial preconditioning aims at speeding up the convergence of conjugate gradient
type methods for the solution of Az = b by applying them to one of the two equivalent

linear systems

T(A)Az = T(A)b (5.56)

(left preconditioning), or

T(A)Ay=b, z=T(A)y (5.57)

(right preconditioning). Here T is a suitably chosen polynomial of small degree. For the
case of Hermitian positive definite A, Rutishauser [Rut] proposed polynomial precondition-
ing in the 50’s as a remedy for roundoff in the classical CG algorithm. The revival [JMP])
of Rutishauser’s method and the general interest in polynomial preconditioning is mainly
motivated by the attractive features of this technique for vector and parallel computers
(see [Saa2] for a survey). It is interesting to note that Lanczos seems to have been the
first to consider polynomial preconditioning. The idea already appeared in his 1953 paper
[Lan3] which, alas, is never referenced.
In this section, we study polynomial preconditioning for the class of matrices (3.1)
A =T +i0l. Let I > 2 be any fixed integer. We seek a polynomial T € II;-; with the
following two properties: '
(i) the coefficient matrix T(A)A of (5.56) and (5.57) is again a shifted Hermitian matrix
of the form (3.1);
(ii) the convergence of conjugate gradient type methods, applied to the preconditioned
systems (5.56) or (5.57), is speeded up optimally.
As in the previous section, let a, 3 € R be given such that

a<pu<p forall eigenvalues u of T, (5.58)

and assume that 0 < a < 8 if ¢ = 0. Our criteria for optimal convergence in (ii) will
be based on (5.58) as the only available information on the spectrum A and on the error

bounds stated in Theorem 5.11.
First, consider requirement (i). For any Y € II;-;, we can represent T(4)4 in the

form

Y(A)A = (T +icD)X(T +icl) = ¥(T) + i1, (5.59)

62

with ¥ € I[I; and 7 € R. Note that T, ¥, and 7 are related by
(u+i0)Y(u+i0) = ¥(p)+ir and 7:=1¥(-i0). (5.60)

Since ¥(T) is Hermitian if. and only if, ¥ is a real polynomial, it follows from (5.59) that
(1) is fulfilled if, and only if, ¥ € H(r) and 7 € R. Therefore, from now on, it is assumed
that T € IT;_, satisfies (5.60) with ¥ € H(r) and T € R.

Next, we turn to the question of optimal choice of ¥ and r. A first, very tempting
strategy is to require 7 = 0 and to choose ¥ such that T(A)A = ¥(T) is positive definite.
The preconditioned system (5.56) can then be solved by the standard CG method. Clearly,
¥(T) = I should approximate the identity matrix as best as possible. Using (5.58) and
(5.60), we conclude that such an optimal ¥ is given as the best approximation in

min 1- . (5.61)
ven{": v(—io)=0 #EIG 8] | V)l

For positive definite matrices 4 = T, this approach just leads to Rutishauser’s method
[Rut]. For the non-Hermitian case o # 0, (5.61) turns out to be equivalent to the approx-
imation problem (5.32), and we have the following

Theorem 5.12. Let ¢ # 0 and | > 2. Then, there exists a unique best approximation in

(5.61) given by

B+ a-—-2u B+ a+ 2o
U) =1-§(EEE K.y, o= 7T 5.62

(1) (5) T a (5.62)
where ®(z;a) is the extremal polynomial of (5.32) (for n = 1) with optimal value E,(r)(a)
(cf. Theorem 5.8). Moreover, the matrix T(A)A = ¥(T) is positive definite with eigen-
values in [1 — E,m(a), 1+ E,(r)(a)], and for the iterates r, of the CG method. applied to
(5.56), the estimates

. —Zn 2 . 141 (E(a
2. = 2alloe) n=1,2..., R:= V1= (), (5.63)

llz. — zolle(r) = R*+1/R™’ EM(a)

hold.

Proof. The linear transformation z(p) = (8 + a — 21)/(B8 — «) maps [a, f] onto [-1 1]
Moreover, ®(z(1)) = 1 — ¥(p) defines a one-to-one correspondence between all ¥ € H
with ¥(—i0) = 0 and all real polynomials ® € II;(a). This shows that (5.61) and (5. 32) are
equivalent (recall that the optimal polynomial for (5.32) is real), and, hence, ¥* is indeed
the unique best approximation in (5.61). The error bounds (5.63) follow from (5.48) and
(5.45) (with o =0, a = 1 — E{(a), and 8 = 1+ E{"(a)). O

63

Recall (see Figure 5.1) that for fixed [of moderate size and fixed R. E}‘r)(a) strongly
depends on the position of a on the ellipse Bg. In particular, if a is close to the real points
of the ellipse. E,(r)(a) is significantly larger than for the other points of Bgr. Therefore,
(5.63) suggests that the polynomial (5.62) will yield a poor preconditioner for matrices A
which are nearly Hermitian positive definite. This will be confirmed by numerical results
presented in Section 7.3. Therefore, in order to obtain a polynomial preconditioner which
is satisfactory for all a € B,, it is crucial to treat 7in (5.59) as a free parameter, and, next,
we determine optimal choices of p and 7 for speeding up the MR and ME algorithms.

First, consider the MR method. For it, right preconditioning (5.57) is the more natural
choice between (5.56) and (5.57), since residual vectors for (5.57) are also residual vectors
of the original linear system. Let y, denote the nth iterate of the MR algorithm applied
to T(A)Ay = b, and set PP = Y(A)yn. Moreover, let z, be the nth approximation
generated by the MR method applied to the original system Az = b. Then, assuming that
zo = P, it follows with (5.57) that Kn(T(A)ro, T(A)A) C Krni(ro. A) and PPz € 2o+
Kui(ro, A). Hence, the minimization property (5.3) implies that |[|b— Azn]| < [|o—AzFP).
Therefore, in view of (5.46), we conclude that, based on (5.58) as the only information on
the spectrum of A, the best possible choice of T € II;—; is one which guarantees the

estimates b — A2PP)|
— Az 2

< =1,2,.... 5.64
[|6 — Azol] ~— R™ +1/R"’ ” (5:64)
with R defined in (5.45). We call T € II;_; an optimal polynomial preconditioner for the

MR algorithm if it leads to the error bounds (5.64).
Similarly, for the ME method with left polynomial preconditioning (3.56), the error
bounds (5.47) and Corollary 5.10 suggest that the best possible choice of T € II;—, is one

for which the iterates z£F satisfy

lz. = 2Pl _ o) -
HI* _ ;0” S En+l(a)$ n

Il

1,2,..., (5.65)

for some @ € Bgi. A polynomial T € II;_; is called an optimal preconditioner for the ME

approach if it guarantees (5.65).
With this notion of optimality, we can now state the main result of this section as

follows.

Theorem 5.13. Let | > 2. Then,

Yioi(A) = Zi(A ";") T (5.66)
where
Ty(p) = n(Q—“—ﬂ'—_ﬂTE—"-) _ReTi(-a) and 1=—ImTi(-a), (5.67)

64

VRN

is an optimal polynomial preconditioner for the MR and ME methods. Here. T; denotes
the Ith Chebyshev polynomial (cf. (5.34)) and a is given in (5.62).

Proof. First, note that. by (3.67), ¥(—ic) = —ir, and thus (5.66) defines indeed a
polynomial T € IIj_;. Next, consider the preconditioned matrix A= T(A)A. With
(5.58) and since T; maps the interval [—1,1] onto itself, it follows that the eigenvalues of
the Hermitian part ¥;(T) of 4 are contained in [&, 3] where &@ := —1 — ReTi(—a) and
3 :=1— ReTi(—a). Now we apply Theorem 5.11 (with a = &, 8 = 3, and ¢ = 7) and
note that, by (5.33) and (5.34),
s BT AT o) e Bg.
B —a

The error bounds (5.64) and (5.65) are then an immediate consequence of parts a) and b)
of Theorem 5.11, respectively. Hence Y, is an optimal polynomial preconditioner, and

the proof is complete. [

We remark that, in [ELV], Eiermann, Li, and Varga developed a general theory for
polynomial preconditioning for asymptotically optimal semi-iterative methods. In particu-
lar, by means of Theorem 5.13 from [ELV], one can show that the polynomial preconditioner
(5.66) is also best possible for semi-iterative procedures for the class of matrices (5.1).

Also, recall that, for the GAL approach, there are in general no error bounds on which
we could base the choice of a best possible polynomial T. However, in analogy to the case
of real symmetric matrices (see [SW, SF, Szy]), preconditioning for the GAL method can
be motivated by its close connection (cf. (5.24)) to the ME algorithm. Therefore, we
regard (5.66) also as an optimal polynomial preconditioner for the GAL method.

Finally, note that polyno'mial preconditioning is easily incorporated into the MR and
ME/GAL Algorithms 5.3 and 5.4. Right preconditioning leads to slightly more economical
implementations, and only this choice is considered in the sequel. The idea is to apply the
CG type methods to the linear system T;_;(A)Ay = b — Azo with starting guess yo = 0.
The resulting iterates y, of the MR and ME/GAL approaches are generated by Algorithm
5.3 and 5.4, respectively, modified in the following way: substitute yn for z,. replace, in
(5.22), o by T (defined in (5.67)), and finally, in step 2) of Algorithm 5.3 and 5.4, perform

the following Lanczos recursion

v=:" - G,v, — Bavn-i,
2 B+ «

where 2z(") :=T¢(ﬂ T—B -
_a —

(5.68)

I)vu, Gp = vfz("),

and set ap = &n — ReTi(—a). We remark that for this computation only T;, but never the
complex polynomial (5.66), is used. The actual preconditioner Y., appears only in the

65

translation of the y, into the corresponding iterates
Tn =29+ Ti=1(A)yn (5.69)

for the original system Ar = b. However, we do not need to generate z, in each step.
Note that the norm ||ra|| of the residual r, = b — Az, is available (cf. Section 5.2) from
the procedure generating yn, and the iteration is stopped as soon as lIrnl| is sufficiently
reduced. Hence, z, is computed only once, namely in the very last step of the algorithm.
Finally, notice that 2(™ in (5.68) can be obtained by performing [steps of the classical
Chebyshev semi-iterative method (see Golub and Varga [GV]). More precisely, setting
_Bte 2

I, w:=

2 B—-a’

n 2 B+ a
z§~):=Tj(ﬂ_aT—ﬂ_a

the three-term recurrence formula of the Chebyshev polynomials leads to the following

Dv,, T':=T (5.70)

Algorithm 5.14. (Computation of z{(™ in (5.68).)
0) Set z((,") = v, and zgn) =w T vp;
1) Forj =2....,1, compute
n) (n) (n)
zg- = 24‘.'T'zj'_1_l — 2, 5;
2) Set (M = 2™,

We remark that the computation of z(™ via Algorithm 5.14 requires 2! matrix-vector
products T - v, v € RY, and 2! additional real multiplications. If T and rq are real (cf.
Section 5.3), all z;") are real too, and the work is halved.

Similarly, using (5.66), (5.67), and again the three-term recurrence formula of the
Chebyshev polynomials, a routine calculation shows that the following algorithm just yields

the iterate (3.69).

Algorithm 5.15. (Computation of z, in (5.69).)
0) Set hS™ =y, and B\ = 20(T'yn — (BE2 + io)ya);
1) For j =2,...,1 -1, compute
R = 2T D) — A5, + 2T5(—a)yn;

2) Set 2, = T0 + whff)l.

66

6. Complex versus equivalent real linear systems

In this section, we study connections between (1.1) and its equivalent real versions. Unless
stated otherwise, 4 is assumed to be a general complex .V x N matrix. Recall that, in
view of (1.10), the iterates of any Krylov subspace method (1.2) for solving (1.1) are of

the form

In = Ig + @(A)T’o, @ € Hn_]. (61)

6.1. Equivalent real linear systems

By taking real and imaginary parts in (1.1), we can rewrite (1.1) as the real linear system

Rez Reb Red —-ImA
= = ‘)
A [Imz] [Imb} A [ImA Re A] ' (6-2)

A second real version of (1.1) is

Rebd RedA ImAd

=[Imb]’ Auw = [ImA —ReA]' (6:3)

—Imz

A [Rez]

Obviously, (6.2) and (6.3) are the only essentially different possibilities of rewriting (1.1)
as a real 2N x 2N system. Furthermore, note that 4. is nonsymmetric if, and only if.
4 # A¥ is non-Hermitian, whereas A., is symmetric if, and only if, 4 = AT Hence, for
complex symmetric linear systems the approach (6.3) appears to be especially attractive
since it permits the use of simple CG-type methods such as SYMMLQ and MINRES for

real symmetric matrices.
In the following proposition, we collect some simple spectral properties of 4. and A...

Proposition 6.1.
a) Let J = X~'AX be the Jordan normal form of A. Then A. has the Jordan normal

form ! _
J 0] .o , 1 [x =X
[0 7] = Xg ‘4*X* Where 4X'§ = \/§ [—ZX Y] . (64)

In particular,
A(AL) = MA) U A(4). (6.5)

b) The matrices A.. and —A.. are similar. In particular,

AT, =X € MAu) forall Xe A(Aw). (6.6)

Moreover,
MAwn) ={reC| A € A4A)}.

67

c) Let A = AT be complex symmetric. Then, there exists a singular value decomposition

(the so-called Takagi SVD) of A of the form
A=USUT, U unitary, T =diag(e,,02,...,0nv)>0. (6.7)

Moreover, A.. is a real symmetric matrix with spectral decomposition

T
Y -Z]|{E O Y -Z - .
A,.=[Z Y][O —E] [Z Y} where Y =Rel, Z=ImU. (6.8)
Proof. a) First, note that
el X 0 1 Iy —ily . —
X.=S5 [0 Y] where S := ——\/§ [—iIN In] is unitary. (6.9)

In particular, (6.9) shows that with X also X, is nonsingular. One readily verifies that

H, o [4 0
SA.S_[O K}’

and, in view of (6.9), this implies (6.4). (6.5) is an obvious consequence of (6.4).

b) Since
0o In]T, [0 Iv]_
[—IN 0] Aue [——IN 0] = =4

the real matrices A., and —A., are similar. Hence, (6.6) holds true. The relation between
A(A..) and A\(AA) is known (see [HJ, p. 214] for a proof).

c) (6.7) is the well-known Takagi singular value decomposition for symmetric matrices
(e.g. [HJ, Corollary 4.4.4]). By rewriting (6.7) in terms of the real and imaginary parts of
A and U, one obtains (6.8) (cf. [HJ, pp. 212-213]). C

Roughly speaking, Krylov subspace methods are most effective for coefficient matrices
A whose spectrum, except for possibly a few isolated eigenvalues. is contained in a half-
plane which excludes the origin of the complex plane. On the other hand, if this half-
plane condition is not satisfied and if a large number of eigenvalues of A straddle the
origin, usually the convergence of CG-type algorithms is prohibitively slow. Typically, in
these situations (see [Eis, Frel, Fre2] for examples), iterations based on Krylov subspaces
generated by A offer no advantage over solving the normal equations (1.8) by standard
CG. See Theorem 6.3 below for a theoretical result along these lines.

For complex linear systems which arise in practice the half-plane condition is usually

satisfied. Indeed, mostly
AMA)c {reC|ImA>0}. (6.10)

68

It

However, by rewriting (1.1) as real linear systems (6.2) respectively (6.3), one deliberately
creates coefficient matrices whose spectra are most unfavorable for Krylov subspace meth-
ods. The case (6.3) is especially bad since, in view of (6.6). A(A..) is symmetric with
respect to real and imaginary axis and hence the eigenvalues always embrace the origin.
Similarly, by (6.3), the coefficient matrix A, of (6.2) in general has eigenvalues in the upper
as well as in the lower half-plane. In particular, if (6.10) holds and, as in most applications,
the Hermitian part (A + Af)/2 of 4 is indefinite, the spectrum of A. straddles the origin
and the half-plane condition is not satisfied for A.. The following example illustrates this

behavior.
Example 6.1. Consider the subclass of 5.1 of complex symmetric matrices of the form

A=T+iol where T=TT isreal and ¢ >0. (6.11)
Obviously,
MA) ={A=p+io|peo(T)
CS:= [um +io,up + z'a] (6.12)

bl

where fim = Amin(7) and gar = Amax(T). Note that the complex line segment S is parallel
to the real axis and always contained in the upper half of the complex plane. In view of
(6.5), (6.12) implies

MA)={A=ptic|peo(T)}cCSUS.

We remark that SU S is a tandem slit consisting of the two complex intervals $ and S
which are parallel and symmetric to each other with respect to the real axis. Moreover, the
eigenvalues of A, straddle the origin, if the Hermitian part T of A is indefinite. Finally,

using (6.11) and part b) of Proposition 6.1, we obtain
MAw)={A =2V +0? | pe XT)}
C [— \ 1y +02,—a] U [U.\/uf"\l ~f-02}.

Note that the class (6.11) is closely related to shifted skewsymmetric matrices. Indeed, if,

instead of Ar = b, we rewrite —iAz = —ib as a real system (6.2), one obtains
. _ oly T _ i 0 -T — _¢T
(=id), = [_T UIN] —oLy-S, §:= [T 0] (_ S) (6.13)

Then, the eigenvalues are contained in a line segment which is parallel to the imaginary

axis and symmetric with respect to the real axis:

M(=iA)) = {A=otip|pe XD} Clo—ipo+ip), p=max{luml|puml}

69

6.2. Correspondence of Krylov subspace methods

In analogy to (6.1) for complex linear systems (1.1). a Krylov subspace method for the

solution of the equivalent real systems (6.2) respectively (6.3) generates iterates

Rern - R.e IO Re ro (r)
[Imrn] - [Imzo} @(A)[0}’ (penn 1 (6.14)
respectively
Re In _ RGZO ReT'g)
[—Imzn] - [—Im:r] +¢(A")[TO] 1 ‘I)EHn—l- (615)

In the sequel, the notation
K{(c,B) = {#(B)e | 2 €T} (c Ku(c, B))

will be used.

At first glance, it might appear that Krylov subspace iterations (6.1) respectively
(6.14-6.15) for the original complex systems respectively its equivalent real versions cor-
respond to each other. However, as the following proposition shows this is not the case in

general.

Proposition 6.2. Let n € N.
a) Let ® € In_1. Then, 1, = z¢ + ®(A)ro Is equivalent to

[Rern]z[Rero]+@(A)[ﬁzro]Jr%H [_Iggo} (6.16)

Imz, Imz

where ® = &, + 19,9, &), P2 € H(r)
b) Let & € H(r) Then, (6.15) is equ1valent to

2, =Rezn +ilmz, = zo + V(AT + T(ZA)dr, (6.17)
where U € II\{),_, , and T € I _,,) are defined by ®(A) = T(3) + AT(A?).
Proof. First, we note that, for y =0,1,...,

; Red’ —ImAJ Re(AA4) Im(AA)
i— : , = . aar
(A)' =11ma/ Reas and (A.)" = —~Im(AA)Y Re(AA) |’ (6.18)

as is easily verified by induction on j.

70

a) Let v, and §,; be the coefficients of the real polynomials &, and P,, respectively.
Then,

n-—1
Re®(4) = Y (y;Red’ - 6;Im A7),
7=0 (6.19)

n—1
Im®(4) =) (v;Im A’ +8;Re).
i=0
By reformulating 2, = o + ®(A)ry, by means of (6.19) and the first relation in (6.18), in
terms of real and imaginary parts, one immediately obtains (6.16).
b) A routine calculation, using the second identity in (6.18), shows that (6.15) can be

rewritten as

[Bem | =[S |+ [et SR |

Hence (6.15) and (6.17) are equivalent. [J

In view of part a) of Proposition 6.2, the corresponding real equivalent of complex
Krylov schemes (6.1) are iterations of the type (6.16) and not the obvious real Krylov
subspace methods (6.14). Clearly, the actual choice of the polynomials in (6.1) respectively
(6.14-6.13) is aimed at obtaining iterates which are — in a certain sense — best possible
approximations to the exact solution of the corresponding linear system. By using schemes
of the type (6.14), from the first, one gives up n of the 2n real parameters which are
available for optimizing complex Krylov subspace methods (6.1). Consequently, it is always
preferable to solve the complex system (1.1) rather than the real version (6.2) by Krylov
subspace methods. Furthermore, numerical tests reveal that tlre convergence behavior of

the two approaches can be drastically different (see Chapter 7).

6.3. A connection between MR and CGNR for complex symmetric matrices

Now assume that A is a complex symmetric N x N matrix. Then, in view of part ¢) of
Proposition 6.1, A,y is a real symmetric indefinite matrix whose spectrum is given by

MAw)={%0;|j=1,...,N}. (6.20)

Here 0; = 0j(A) 2 0,j =1,..., N, denote the singular values of 4.

Since there are simple extensions, namely SYMMLQ and MINRES, (cf. Section 5.1)
of classical CG to real symmetric indefinite matrices, it is especially tempting to solve (6.3)
by one of these methods. Recall that SYMMLQ generates iterates defined by a Galerkin
condition, whereas MINRES is based on a minimal residual MR property (cf. (1.3)). Here,

71

we consider only the MR approach. Applied to (6.3) it generates a sequence of iterates z,.

n =1,2,..., which are characterized by

|bes = Aveznll = min [bas — Auxzl], zn €20+ K (g Ade). (621
:Ezo+1\'.(-.')(r5"«4n)

Here, we have set

bow 1= [5;2] , Ini= [_RI:;"] forn=0,1,..., 715" = b — Auxz0. (6.22)
Roughly speaking, CG-type algorithms for real symmetric indefinite systems converge
slowly if the coefficient matrix is strongly indefinite, in the sense that it has many positive
as well as many negative eigenvalues. Unfortunately, since, by (6.20), A(A..) is even
symmetric to the origin, A.. exhibits this undesirable property. Indeed, numerical tests
show that the convergence behavior of the MR method (6.21) is practically identical to
that of the tabooed approach to (1.1) via solving the normal equations (1.8) by standard
CG [HS). In the sequel, we refer to this latter method as CGNR. Notice that the iterates

zn of CGNR are defined by the minimization property

b— Az = min b— Azl|, i € 2o + Ki(Afrg, AT A). 6.23
lb-dmll= min . b-dsl @e ot Kildfro, AL (62)

Next, we prove that MR and CGNR are even equivalent, if the starting residual rg*
satisfies a certain symmetry condition. Note that, corresponding to the spectral decompo-

sition (6.8), rg* can be expanded into eigenvectors of A.. as follows:
0 124

15|

rg*:[lzf ;Z}c with c=| @ | €R™ (6.24)

C2n

Theorem 6.3. Let MR and z{ONR denote the iterates generated by (6.21-6.22) and
(6.23), respectively, both started with the same initial guess o € CV. Assume that c in

*i

the expansion (6.24) of rg* satisfies

lej| = len+sl, 7=1,2,...,N. (6.25)
Then,
gCONR = g MR — MR 1=0,1,... . (6.26)

Proof. First, note that, in view of (6.8) and (6.24), c; and cn4; are components corre-
sponding to a pair of symmetric eigenvalues £o; of A... However, for any real symmetric
linear system Auuz = b,. with “symmetric” eigenvalues and “symmetric” starting residual

72

ro” in the sense of (6.20) and (6.25). respectively, the MR method generates iterates with
In € 20 + A’t:)/:,J(A“rg',Af,) (see. e.g., [Fre2]). Consequently, the iterates defined by
(6.21) satisfy

20 = 2o € 20 + K7 (Aearg®, 42, (6.27)

In particular, by (6.22), (6.27) shows that z; ”R = I;{fx

It remains to prove the first relation in (6.26). To this end, we remark that

[bas — Auuz|| = ||b— Az]] forall == [_Rf;ﬂ , zeCV, (6.28)

Moreover, by using (6.22) and part b) of Proposition 6.2 (applied to polynomials ®(}) =
AT(A?)), we deduce

20+ K7 (Award* A yiar) = {{_RI;‘I] l z €+ K,")(AHrO,AHA)} (6.29)
(notice that A = A in (6.17)!). In view of (6.27-6.29), (6.21) (for n = 2!) can be rewritten

in the form

b — AzR|| = min 16— Az, zMBezo+ K" (AHr,, AHA). (6.30)
€20+ K7 (AHre AN A)

Finally, remark that the iterates of CGNR always correspond to real polynomials, t.e.,
OVR € 74 + K,(r)(AHro,AHA). Hence, by comparing (6.23) with (6.30), we conclude
that J:ICGNR = ré‘,m. 0

Clearly, the special symmetry condition (6.25) will not be satisfied in general. Nev-
ertheless, all our numerical experiments showed (see Examples 7.3 and 7.4) that (6.26) is

still fulfilled approximately, .e.,

0ONR o)R MR 1 =0,1,... . (6.31)

73

7. Numerical experiments

We have performed extensive numerical tests with the QMR algorithm and all the other
iterative schemes considered in this thesis. In this chapter, we present a few typical results
of these experiments for complex symmetric and shifted Hermitian linear systems arising
from the Helmholtz equation (1.5). Numerical experiments with the QMR method applied

to real nonsymmetric matrices are reported in [FN1, FN2].

7.1. The test problems

Consider (1.5) on the unit square G = (0,1) x (0,1) with 5; € R a constant and o,
a real coefficient function. First, assume that u satisfies Dirichlet boundary conditions.
Then, approximating (1.5) by finite differences on a uniform m x m grid with mesh size
h =1/(m + 1) yields a linear system (1.1) with 4 an N x N, N = m?, matrix of the form

A=T+ih?D, T=Ay—oh*I, D =diag(dy.ds,...,dn). (7.1)

Here Ag is the symmetric positive definite matrix arising from the usual five-point dis-
cretization of —A and the diagonal elements of D are just the values of o2 at the grid
points.

Similarly, if we consider the real Helmholtz equation (1.5), i.e., o2 = 0, but now with

a typical complex boundary condition such as

Ou .
5, = iou on {(1,y) | -1<y<1}

(which is discretized using forward differences) and Dirichlet boundary conditions on the

other three sides of the boundary of G, one again arrives at (7.1) where

djz{a/h ifj=l'm,1=1,...,m. (7.2)
0 otherwise.

The test problems presented in this chapter are all linear systems Az = b with complex
symmetric coefficient matrices of the type (7.1). Note that (7.1)is also a shifted Hermitian
matrix if D is a multiple of the identity matrix.

For Examples 7.1 and 7.5, the mesh size h = 1/64 was chosen. resulting in a 3969 x 3969
matrix A. In Examples 7.2-4, h = 1/32 and thus A is a 961 x 961 matrix. Example 7.6
was run on a 128 x 128 grid leading to a 16384 x 16384 matrix A. The right-hand side b
was chosen to be a vector with random components in [—1,1] +1[—1, 1], with the exception
of Example 7.2, where b had constant components 1 + ¢, and of Example 7.5, where the
exact solution z. was generated with random components in [-1,1] +i[—1,1] and then the
right-hand side was set to b:= Az.. As starting vector always zo = 0 was chosen.

74

v

As stopping criterion, we used

b= Azall _ s _
Ry, = —mm < 107", 3
] (73)

In Figures 7.1-4, the relative residual norm (7.3), Rn, is plotted versus the number N, of
matrix-vector products with 4, 4., or A... Note that N, =n is identical to the iteration
number, except for CGS respectively CGNR which both require two matrix-vector products
A v respectively A-v, A-v per iteration and for which N, = 2n. For GMRES [SS2], work
and storage per iteration step n grows linearly with n and in practice it is necessary to use
restarts. In the sequel, GMRES(n,) and GMRES,(no) refer to complex and real versions
— restarted after every ny iterations — of the GMRES method applied to (1.1) and (6.2),

respectively.

7.2. Complex symmetric linear systems

In a first series of experiments, QMR (with different weighting strategies) and BCG were
compared. The natural choice (3.7) turned out to be the best strategy in all cases. In the
following, QMR always refers to Algorithm 3.1 with weights (3.7). Then QMR produces
residual vectors whose norms are almost monotonically decreasing and generally smaller
than those of the BCG residuals. However, convergence of QMR and BCG typically
occurred after a comparable number of iterations. The following example is typical.

Example 7.1. Here, (7.1) is a 3969 x 3969 matrix with o; = 200, and the diagonal
elements of D are given by (7.2) with a = 10. In Figure 7.1, the convergence behavior
of BCG, QMR. and an unweighted version of the QMR approach (based on the Lanczos
vectors v,, as generated by the complex symmetric Lanczos Algorithm 4.1) is displayed.

75

J WR———

10-1 +

102F

107+

10-4 -
QMR
105+

104 - - ; -

0 50 100 150 200 250 300 350 400 450 500
Figure 7.1. Convergence behavior of BCG, QMR, and an unweighted version of
the QMR approach for Example 7.1.

Next, we compared the CGS Algorithm 4.8 and complex GMRES with QMR and
BCG. Typically, CGS needed slightly fewer iterations than QMR and BCG to reach (7.3).
However, per iteration, QMR and BCG require only about half as much work and storage
and thus CGS is more expensive than QMR or BCG for complex symmetric matrices. Due
to the necessary restarts, GMRES was never competitive with QMR, BCG, or CGS.

Example 7.2. In (7.1), we set N = 961, oy = 100 and dj, j = 1,...,n, are chosen as
random numbers in [0,10]. Figure 7.2 shows the convergence behavior of GMRES(20),
QMR, BCG, and two runs of CGS with different starting vectors so, namely so = 7o
respectively so with random components in [-1,1] + i[—1,1]. Notice the extremely large

residual norms in the early stage of the CGS iteration.

76

109 : - v Y ,
= 3
- 3
E 3
- p
- v -
1
106 E J 3
= 3
o B
- 0" _ -
- \‘ o CGS(SQ = 7‘0) A
'.:"' :: /
) ' . B
103 £, ! - (vy 0 g =
+d ' N L L I N 3
rd [[N ') Ao p
[[" [,:] hoy oy n
t L ' [! "y " o oy »
I L oy feotiat
i | [S " DR heagat 4
I~ i O N T AN [RINTEN
. PO T Yoy IETR AN
a vl : vi : " :" "I‘: |l|l' |“. =
v Ll - (N} wi 1 Iy o fy t
IR LT I SO - 1o [T o ¢
100 K TEIR RN R R SIS AN IR GMRES(20) ,
2 PR AR O T 3
= “" ¢ b v ,,: n|| (] g ::: - M a
dh - oy ¥] 1 1
- ‘ et T LN n .
R IRTRS S -
i A P L IR
: . .
~ ‘i N v"". :) h
R
i L
10-3 - . i '|l'l o) ‘: =
= U T [=
= . D A Y S E
- - - ["n‘ -
o . Vo Ty O P
b g ["l' I -1
i CGS dom)ii * M]
= i
i (so =random) ¥ ; i
13
106 " L 1 L i ol :

Figure 7.2. Convergence behavior of GMRES(20), QMR, BCG, and two runs
of CGS with different starting vectors sq for Example 7.2.

In the following two examples, we compared CG-type methods for Az = b with real
schemes for the equivalent real systems (6.2) respectively (6.3).
MR(4..) denotes the MR method (6.21) applied to the real symmetric system (6.3).

Example 7.3. Here, in (7.1), N = 961, 0, = 100, and d; are given by (7.2) with a = 100.
In Figure 7.3, the convergence behavior of QMR, MR(A..), GMRES(20), GMRES(3),
GMRES.(3), and CGNR is shown. Notice that, although the symmetry condition (6.25)
is not fulfilled, the curves for CGNR and MR(A..) are almost identical. This confirms
(6.31). Finally, we tried GMRES(k¢) and GMRES, (ko) also with other restart parameters
ko. For this example, both methods did never converge.

7

109

GMRES(5) GMRES.(3) CGNR

10!

=
=
=
-
£ s
=
-
-

102

T TTTHM
A1 L lididl

103

rrirrmn
Lol d 1ldil)

104

Lol A dLliil

LB RLRALLL

-~ QMR

10+

T TTTImm
L1 L aitiil

106 | R : , . .
0 500 1000 1500 2000
Figure 7.3. Convergence behavior of QMR, MR(A..), GMRES(20), GMRES(5),
GMRES.(5), and CGNR for Example 7.3.

7.3. Shifted Hermitian linear systems

Now we choose D = 031 in (7.1). Then, (7.1) is a shifted Hermitian matrix of the form
A=T+10l, T=.—10—0'1h21',' o= oah?. (7.4)

Note that A is a shifted Hermitian matrix of the form (6.11) (cf. Example 6.1). In partic-
ular, 4 belongs to the class of matrices (5.1) and we can apply the algorithms developed
in Chapter 5 to Az = b.

Example 7.4. Let A be the 961 x 961 matrix (7.4) with o1 = 1000 and o, = 100.
Here, we denote by A/ R(A4) the run with MR Algorithm 5.3 applied to the original system
Az = b. Recall that, by rewriting —iAz = —ib as a real system (6.2), one obtains a
shifted skewsymmetric matrix (6.13), (—74).. Again, for such matrices an efficient true
minimal residual algorithm, denoted by MR((—iA).), exists [EES, Frel]. Figure 7.4 shows
the convergence behavior of MR(4), MR(4..), MR((-14).),CGNR, and GMRES(20).
Notice that MR((—~iA).) and CGNR are nearly identical. This is typical for the case that
o is small compared to the spectral radius of T. Furthermore, if ¢ = 0, ie. (—id). in
(6.13) is skewsymmetric, CGNR and MR((-:A4).) are even equivalent [Frel].

78

100 T T Y T T T T E':
101 = / é
o GMRES.(20) §
10'2_5_ E
103 ™
104 L MR((-i4).))
- CGNR]
10-5 3 N 3
- MR(A..)]
10 L . " i ; * .
0 100 200 300 400 500 600 700 800

Figure 7.4. Convergence behavior of MR(4), MR(A..), MR((—-:4).),CGNR,
and GMRES(20) for Example 7.4.

In the next example, we tested the various polynomial preconditioners discussed in
Section 5.5. Note that the eigenvalues of 4, are known, and for our experiments with

polynomial preconditioning we have used the true values

-1
Ot
—

a =)‘min(AO) —_— 0’1h2 s ,3 = /\max(AO) —_ 01h2 (.
of the extreme eigenvalues of T (cf. (5.58)).

Examples 7.5. The matrix A is 3069 x 3969. For the constants in (7.4), values of the form
o1 = 01(¥), 02 = 02(3p) were chosen. Here 0 < ¢ < 7/2is a parameter such that the points
a() = (B + a +2i0)/(8 — @) all lie on the same ellipse Br, R > 1 fixed, with v describing
the position of a(1) on Bg (see (5.31) and (5.33)). The case 3 = 0 corresponds to a
symmetric positive definite matrix (7.4), and for our experiments, we have chosen R > 1
such that A = 4, for ¥» = 0. Moreover, notice that with increasing ¥, the symmetric part
T of (7.4) becomes more and more indefinite and a = —§ for ¢ = n/2. Also, the shift o
increases with ¥. Finally, we remark that the error bounds of Theorem 5.11 suggest that
the MR and ME methods should display similar convergence rates for all . In Tables
7.1-4, for several values of i (stated in degree!) and the various CG-type methods, we
list the number of iterations which were necessary to reach (7.3). A “x” indicates that the
process still had not converged after 200 steps. In Table 7.1 the results for the MR, ME,

79

and GAL Algorithms 5.3 respectively 5.4 (without preconditioning) are given. The Tables
7.2, 7.3, and 7.4 display the behavior of the three methods combined with the polynomial
preconditioner (5.66) with | = 6,11. and 16, respectively. Also listed are the results for
the ZPCG method consisting of the classical CG algorithm with Zolotarev polynomial

preconditioner (5.62) (see Theorem 5.12).

G/Degree] 05 10 15 20 25 30 35 40 45
MR 120 126 148 165 175 183 190 197 203 208
ME 183 177 166 186 191 210 210 215 224 231
GAL 129 144 165 182 198 208 213 222 225 231
W/Degree | 50 55 60 65 70 75 80 85 90

MR 212 217 221 224 228 232 234 237 239
ME 236 237 244 245 250 252 259 260 263
GAL 236 240 244 248 253 255 259 261 264

Table 7.1. Number of iterations after which the various algorithms had reduced
the norm of the starting residual by 107%. Listed are the numbers for the basic
methods without preconditioning. The family (depending on the parameter)
of test problems is the one described in Example 7.5.

y/Degree | 0 5 10 15 20 25 30 35 10 45
PPMR | 47 47 47 47 47 47 48 47 47 47
PPME 63 47 47 47 47 47 64 47 47 47
PPGAL |49 49 49 49 50 50 350 50 350 49
ZPCG * % 148 99 74 39 49 56 62 63
¥/Degree | 50 355 60 65 70 75 80 85 90
PPMR 47 4T 47 4T 4T AT 47 47 47
PPME 47 47 63 47 47 47 47 47 63
PPGAL |49 49 49 49 49 49 50 50 50
ZPCG 50 53 48 53 57 58 56 52 49

Table 7.2. Same as Table 7.1, but with polynomial preconditioning of degree
| =6.

80

v/Degree | 0 5 10 15 20 25 30 35 40 45
PPMR |26 26 26 26 26 26 26 26 26 26
PPME (33 26 27 29 26 26 28 2T 26 27

PPGAL |28 28 28 28 28 28 28 28 28 28
ZPCG « 87 44 29 32 34 29 29 31 29
y/Degree |50 35 60 65 70 75 80 85 90

PPMR |26 26 26 26 26 26 26 26 26
PPME |30 27 26 30 27 26 26 28 27
PPGAL |28 28 28 28 28 28 28 28 28
ZPCG |27 30 29 27 29 29 27 28 29

Table 7.3. Same as Table 7.1, but with polynomial preconditioning of degree
= 11.

w/Degree | 0 5 10 15 20 25 30 35 40 45
PPMR | 1S 18 1S 18 18 18 18 18 18 18
PPME | 23 19 18 18 17 17 18 18 17 23
PPGAL | 20 20 19 19 20 20 19 19 19 20
ZPCG | 146 41 21 23 21 20 21 19 20 19

¥/Degree | 50 55 60 65 70 75 80 85 90
PPMR (18 18 18 18 18 18 18 18 18
PPME |17 18 18 17 17 17 17 17 23
PPGAL |19 19 19 19 19 19 19 19 20
ZPCG 20 19 20 19 19 20 19 20 19

Table 7.4. Same as Table 7.1, but with polynomial preconditioning of degree
[=16.

From these results, we draw the following conclusions. If used without preconditioning,
the MR method appears to be superior to the ME and GAL approaches. However, note
that the stopping criterion (7.3) is based on the norm of the residual, and this is more
favorable for the MR method. A comparison based on the Euclidean norm of the error
vector T, — I, displays a similar convergence behavior for the ME and MR approaches.
In combination with polynomial preconditioning, the performance of all three methods
PPMR, PPME, and PPGAL is nearly identical. Also, note that the polynomial (5.66)
yields a very efficient preconditioner which reduces the number of iterations significantly
in all examples. Finally, as already suspected in the previous section, the strategy leading
to the ZPCG method is a very dangerous one, and the algorithm even fails to converge if

A is close to a positive definite matrix.

81

Examples 7.6. Here A is a 16384 x 16384 matrix of the form (7.4) with o, = 62 = 100.
We applied the PPMR method based on the MR Algorithm 5.3 combined with polynomial
preconditioning (5.66) of various degrees [. This example was run on a massively parallel
computer, the CM-2, with 16,384 processors. In Figure 7.5, we plot the number of iter-
ations after which the PPMR method had reached (7.3) versus /. In Figure 7.6. we »lot
the actual computing time (in seconds) versus /. Clearly, polynomial preconditioning:s an

efficient technique on the CM-2.

180 T T y v v .
160 .
140 J
120F 4
100 F .
80+ 4
60+]
40} ;
20 -
0 5 10 15 20 25 30 35

Figure 7.5. Number of iterations for PPMR versus the degree [of the precon-

ditioner for Example 7.6.

82

\

12 . . , . . .
1r -
10}]
ot]
8t J
7+]
6]
st]
4k .
0 s 0 1s 20 25 30 35

Figure 7.6. Actual computing time (in seconds) for PPMR on the CM-2 versus
the degree [of the preconditioner for Example 7.6.

We conclude this section with two further remarks. all the results for the PPMR,
PPME, and PPGAL methods were obtained with right polynomial preconditioning (RPP)
(cf. (5.57)). Experiments with left polynomial preconditioning (LPP) (see (5.56)) gave
nearly identical results. However, since implementations of RPP are slightly more eco-
nomical, we therefore recommend RPP over LPP. Finally, recall that for our tests, the
true extreme eigenvalues (7.5) of T were used. Of course, in general, such information 1s
not available. However, it is possible to obtain good estimates of these quantities after
relatively few steps of the Hermitian Lanczos Algorithm 5.1.

83

8. Concluding remarks

Complex non-Hermitian linear systems arise in important applications, such as the numer-
ical solution of the complex Helmholtz equation. Often their coefficient matrices exhibit
special structures, such as complex symmetry, or they are shifted Hermitian matrices. Here,
we have considered Krylov subspace methods for the solution of complex non-Hermitian
linear systems.

First, we have presented a novel Krylov subspace iteration, the QMR method, for
general nonsingular non-Hermitian linear systems. The method uses a recently proposed
[FGN, FN1] robust implementation of the look-ahead Lanczos algorithm to generate basis
vectors for the Krylov subspaces Kn(ro,4). The QMR iterates are characterized by a
quasi-minimal residual property over Kn(ro, A). Both the look-ahead Lanczos algorithm
and the computation of the actual QMR iterates can be implemented using only short
recurrences. The QMR approach is closely related to the BCG algorithm; however, unlike
BCG, the QMR algorithm has smooth convergence curves and good numerical properties.
Furthermore, we have derived bounds for the QMR residuals which are essentially the
same as the standard bounds for GMRES. To the best of our knowledge, this is the first
convergence result for a BCG-like algorithm for general non-Hermitian matrices.

Second, we discussed various CG-type methods designed for two special classes of
complex non-Hermitian matrices. In particular, we have shown that work and storage
for the QMR and BCG methods is roughly halved for complex symmetric linear systems.
For shifted Hermitian matrices, we have investigated three different CG-type approaches
with iterates defined by a minimal residual property, a Galerkin type condition, and an
Euclidean error minimization. Numerically stable implementations were proposed and
error bounds were derived for all three methods. Moreover, it was shown how the special
shift structure can be preserved by using polynomial preconditioning, and results on the
optimal choice of the polynomial preconditioner were given.

It is very tempting (and often done in practice!) to avoid complex linear system by
solving equivalent real systems instead. We have presented some theoretical and numerical
results which show that this — at least for Krylov subspace methods — is a fatal approach.
Typically, the resulting real systems are unequally harder to solve by conjugate gradient
type algorithms than the original complex ones.

An important question, that we have not addressed here, is how to construct efficient
preconditioners for complex symmetric linear systems, such as the ones arising from the
complex Helmholtz equation. This will be the subject of a forthcoming report.

34

Ca

Acknowledgments

First of all, I would like to thank Susanne for her infinite support and patience and for
putting up with my crazy working hours over all these years. She also helped generously
with the TEXing of this thesis.

I am grateful to Prof. Josef Stoer who first introduced me to conjugate gradient
methods. Also, I would like to thank him for his understanding for several delays in
finishing this thesis. I am indebted to Prof. Gene Golub who first brought the complex
Helmholtz equation and complex linear systems to my attention.

Most of the work on the look-ahead Lanczos algorithm and the QMR method is joint
with Noel Nachtigal whom I wish to thank for the fruitful collaboration. I am grateful to
Steve Hammond who implemented the MR algorithm for shifted Hermitian matrices on the
CM-2 and generated Figures 7.5 and 7.6. Finally, I would like to thank Stratis Gallopoulos
and Youcef Saad for providing some important references, and Marlis Hochbruck for her
careful reading of parts of this thesis.

I gratefully acknowledge the financial support I received over the years. In particu-
lar, parts of this work were supported by the German Research Association (DFG), the
National Science Foundation under Grant DCR-8412314, and by DARPA and NASA via
Cooperative Agreement NCC 2-387 between the National Aeronautics and Space Admin-
istration (NASA) and the Universities Space Research Association (USRA).

85

References

[AMS] Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient meth-
ods. SIAM J. Numer. Anal. 27, 1342-1568 (1990)
(BBGRM] Barbour, I.M., Behilil, N.-E., Gibbs, P.E., Rafiq, M., Moriarty, K.J.M.. Schierkolz,
G.: Updating fermions with the Lanczos method. J. Comput. Phys. 68. 227-236
(1987)
'BG] Bayliss, A., Goldstein, C.I.: An iterative method for the Helmholtz equation. J. Com-
put. Phys. 49, 443457 (1983)
[BGoT] Bayliss, A., Goldstein, C.I., Turkel, E.: The numerical solution of the Helmholtz
equation for wave propagation problems in underwater acoustics. Comp. Maths.
Appl. 11, 655-665 (1985)
(BGuT)] Bayliss, A., Gunzburger, M., Turkel, E.: Boundary conditions for the numerical so-
lution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42, 130-451
(1982)
[BHST] Biddlecombe, C.S., Heighway, E.A., Simkin, J., Trowbridge, C.W.: Methods for eddy
current computation in three dimensions. IEEE Trans. Magnetics MAG-18, 192-497
(1982)
[Bre] Brezinski, C.: Padé-type approximation and general orthogonal polynomials. Ba-
sel: Birkhauser 1980
[BBG] Bunse, W., Bunse-Gerstner, A.: Numerische lineare Algebra. Stuttgart: Teubner
1985
[CT] Carlson, B.C., Todd, J.: Zolotarev’s first problem - the best approximation by poly-
nomials of degree < n —2 to 2” —noz"~! in [-1,1]. Aequationes Math. 26, 1-33
(1983)
[Cha] Chandra, R.: Conjugate gradient methods for partial differential equations. Ph. D.
Thesis, Computer Science Department, Research Report 129, Yale University. January
1978
[CG] Concus, P., Golub, G.H.: A generalized conjugate gradient method for nonsymmetric
systems of linear equations. In: Computing methods in applied sciences and engineer-
ing (R. Glowinski and J.L. Lions, eds.), pp. 56-65. Lecture Notes in Economics and
Mathematical Systems 134. Berlin, Heidelberg, New York: Springer 1976
[Cra] Craven, B.D.: Complex symmetric matrices. J. Austral Math. Soc. 10, 341-354
(1969)
[CW] Cullum, J., Willoughby, R.A.: Lanczos algorithms for large symmetric eigenvalue
computations. Volume 1, Theory Basel: Birkhauser 1985

86

TINE 11 N 11

(IR (]}

[DFP] Delfour. M., Fortin, M.. Payre, G.: Finite-difference solutions of a non-linear Schrodin-
ger equation. J. Comput. Phys. 44.277-288 (1981)

[Dra] Draux. A.: Polynémes orthogonaux formels — applications. Lecture Notes in Mathe-
matics, vol. 974, Berlin: Springer-\Verlag 1983
[DGL] Duff, 1.S., Grimes, R.G., Lewis, J.G.: Sparse matrix test problems. ACM Trans.
Math. Softw. 15, 1-14 (1989)

[DS] Duffin. R., Schaeffer, A.C.: Some properties of functions of exponential type. Bull.
Am. Math. Soc. 44, 236-240 (1938)

[ELV] Eiermann, M., Li, X., Varga, R.S.: On hybrid semiiterative methods. SIAM J. Numer.
Anal. 26, 152-168 (1989)

[ENV] Eiermann, M., Niethammer, W., Varga, R.S.: A study of semiiterative methods for
nonsymmetric systems of linear equations. Numer. Math. 47, 505-533 (1985)

[Eis] Eisenstat, S.C.: Some observations on the generalized conjugate gradient method. In:
Numerical methods, Proceedings, Caracas 1982 (V. Pereyra and A. Reinoza, eds.),
pp. 99-107. Lecture Notes in Mathematics 1005. Berlin, Heidelberg, New York:
Springer 1983

[EES] Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for non-
symmetric systems of linear equations. SIAM J. Numer. Anal. 20, 345-357 (1983)

[EH] Elmore, W.C., Heald, M.A.: Physics of waves. New York: McGraw-Hill 1969

[FM1] Faber, V., Manteuffel, T.: Necessary and sufficient conditions for the existence of a
conjugate gradient method. SIAM J. Numer. Anal. 21, 352-362 (1984)

[F\2] Faber, V., Manteuffel, T.: Orthogonal error methods. SIAM J. Numer. Anal. 24.
170-187 (1987)
[FF} Fischer, B., Freund, R.: On the constrained Chebyshev approximation problem on
ellipses. J. Approx. Theory 62, 297-315 (1990)

[Fle] Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Numerical Anal-
ysis Dundee 1975 (G.A. Watson, ed.), pp. 73-89. Lecture Notes in Mathematics 506.
Berlin, Heidelberg, New York: Springer 1976

[Frel] Freund, R.: Uber einige cg-ahnliche Verfahren zur Losung linearer Gleichungssysteme.
Doctoral Thesis, Universitat Wirzburg, F.R. of Germany, May 1983

[Fre2] Freund, R.: Pseudo Ritz values for indefinite Hermitian matrices. Tech. Report 89.33,
RIACS, NASA Ames Research Center, August 1989

[Fre3] Freund, R.: On conjugate gradient type methods and polynomial preconditioners for
a class of complex non-Hermitian matrices. Numer. Math. 57, 285-312 (1990)

87

[Fred]

[FGN]

[FN1]

[FN2]

[FR]

[Fri]

(GS1]

GS2]

[Gan]

[Gol]

(GVL)

(GV]

Freund, R.: Conjugate gradient type methods for linear systems with complex sym-
metric coefficient matrices. Technical Report 89.54. RIACS, NASA Ames Research

Center, December 1989

Freund, R.W., Gutknecht, M.H., Nachtigal. N.M.: An implementation of the look-
ahead Lanczos algorithm, Part I. Technical Report 90.43, RIACS, NASA Ames Re-
search Center, November 1990

Freund, R. W., Nachtigal, N. M.: An implementation of the look-ahead Lanczos
algorithm for non-Hermitian matrices, Part II. Technical Report 90.46, RIACS, NASA
Ames Research Center, November 1990

Freund, R. W., Nachtigal, N. M.: QMR: a quasi-minimal residual method for non-
Hermitian linear systems. Technical Report 90.51, RIACS, NASA Ames Research
Center, December 1990

Freund, R., Ruscheweyh, St.: On a class of Chebyshev approximation problems which
arise in connection with a conjugate gradient type method. Numer. Math. 48,
525-542 (1986)

Fridman, V.M.: The method of minimum iterations with minimum errors for a system
of linear algebraic equations with a symmetrical matrix. USSR Comput. Math. and
Math. Phys. 2, 362-363 (1963)

Gallopoulos, E., Saad, Y.: On the parallel solution of parabolic equations. In: Proc.
1989 ACM International Conference on Supercomputing, Herakleion, Greece, June
1989, pp. 17-28

Gallopoulos, E., Saad, Y.: Efficient parallel solution of parabolic equations: implicit
methods on the Cedar multicluster. In: Proc. Fourth SIAM Conf. Parallel Processing
for Scientific Computing (J. Dongarra, P. Messina. D.C. Sorensen, and R.G. Voigt.
eds.), pp. 251-256. Philadelphia: SIAM 1990

Gantmacher, F.R.: The theory of matrices. \olume 2, New York: Chelsea Publishing
Company 1959

Goldstein, C.I: Multigrid preconditioners applied to three-dimensional parabolic
equation type models. In: Computational acoustics: wave propagation (D. Lee, R.L.
Sternberg, M.H. Schultz, eds.), pp. 57-74. Amsterdam: North-Holland 1988

Golub, G.H., Van Loan, C.F.: Matrix computations. First edition, Baltimore: The
Johns Hopkins University Press 1983

Golub, G.H., Varga, R.S.: Chebyshev semi-iterative methods, successive overrelax-
ation iterative methods, and second order Richardson iterative methods. Numer.

Math. 3, 147-168 (1961)

88

R RIAR

T

W m by

[Gra] Gragg, W.B.: Matrix interpretations and applications of the continued fraction algo-
rithm. Rocky Mountain J. Math. 4. 213-225 (1974)

[GL] Gragg, W.B, Lindquist, A.: On the partial realization problem. Linear Algebra Appl.
50, 277-319 (1983)

[Gut] Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related
algorithms, Part I. IPS Research Report No. 90-10, Ziirich. June 1990

[HS] Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
J. Res. Natl. Bur. Stand. 49, 409-436 (1952)
[HJ] Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge: Cambridge University Press
1985
[Hou] Householder, A.S.: The theory of matrices in numerical analysis. New York: Blaisdell
1964
[Jac] Jacobs, D.A.H.: A generalization of the conjugate-gradient method to solve complex
systems IMA J. Numer. Anal. 6, 447-452 (1986)
JMP] Johmnson, O.G., Micchelli, C.A., Paul, G.: Polynomial preconditioners for conjugate
Y p
gradient calculations. STAM J. Numer. Anal. 20, 362-376 (1983)
[JY] Joubert, W.D., Young, D.M.: Necessary and sufficient conditions for the simplification
of generalized conjugate-gradient algorithms. Lin. Alg. Appl. 88/89,449-485 (1987)
[KG] Keller, J.B., Givoli, D.: Exact non-reflecting boundary conditions. J. Comput. Phys.
82, 172-192 (1989)
(Kun] Kung, S.: Multivariable and multidimensional systems: analysis and design. Ph.D.
Dissertation, Stanford University, Stanford, June 1977
[Lanl] Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255-282 (1930)
[Lan2] Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res.

Natl. Bur. Stand. 49, 33-53 (1952)

(Lan3] Lanczos, C.: Chebyshev polynomials in the solution of large-scale linear systems. In:
Proceedings of the Association for Computing Machinery, Toronto, 1952, pp. 124-133.
Washington, D.C.: Sauls Lithograph Co. 1953

[Lan4] Lanczos, C.: Applied analysis. Englewood Cliffs, N.J.: Prentice-Hall 1956

[Lau] Laub, A.J.: Efficient multivariable frequency response computations. IEEE Trans.
Automat. Contr. AC-26, 407408 (1981)

[Man] Manteuffel, T.A.: The Tchebychev iteration for nonsymmetric linear systems. Numer.

Math. 28, 307-327 (1977)

89

[Mar] Marfurt, K.J.: Finite element modeling of elastodynamic and electromagnetic wave
propagation for geophysical exploration. In: Computing methods in applied sciences
and engineering VII (R. Glowinski and J.L. Lions, eds.), pp. 517-547. Amsterdam:
North Holland 1986

[MvdV] Meijerink, J.A., van der Vorst, H.A.: An iterative solution for linear systems of which
the coefficient matrix is a symmetric M —matrix. Math. Comp. 31, 148-162 (1977)

[Mei] Meinardus, G.: Approximation of functions: Theory and numerical methods. Berlin.
Heidelberg, New York: Springer 1967

[MF] Moro, G., Freed, J.H.: Calculation of ESR spectra and related Fokker-Planck forms
by the use of the Lanczos algorithm. J. Chem. Phys. 74, 3757-3773 (1981)

[PS] Paigé, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal 12, 617-629 (1975)

[Par] Parlett, B.N.: Reduction to tridiagonal form and minimal realizations. Preprint.
Berkeley, January 1990

(PTL] Parlett, B.N., Taylor, D.R., Liu, 7Z.A.: A look-ahead Lanczos algorithm for unsym-
metric matrices. Math. Comp. 44, 105-124 (1985)

[PM] Peterson, A.F., Mittra, R.: Method of conjugate gradients for the numerical solution
of large-body electromagnetic scattering problems. J. Opt. Soc. Am. A 2, 971-977
(1985)

[Pie] Pierce, A.D.: Acoustics: An introduction to its physical principles and applications.
New York: McGraw-Hill 1981

[Rap] Rapoport, D.: A nonlinear Lanczos algorithm and the stationary Navier-Stokes equa-
tion. Ph. D. Thesis, Department of Mathematics, New York University, October
1978

[Rut] Rutishauser, H.: Theory of gradient methods. In: Refined iterative methods for com-

putation of the solution and the eigenvalues of self-adjoint boundary value problems.
pp. 24-49. Mitteilungen aus dem Institut fir Angewandte Mathematik an der ETH

Ziirich 8. Basel: Birkhéduser 1959

[Saal] Saad, Y.: The Lanczos biorthogonalization algorithm and other oblique projection
methods for solving large unsymmetric systems. SIAM J. Numer. Anal. 19, 485-506
(1982)

[Saa2] Saad, Y.: Krylov subspace methods on supercomputers. SIAM J. Sci. Stat. Comput.
10, 1200-1232 (1989)

[SS1] Saad, Y., Schultz, M.H.: Conjugate gradient-like algorithms for solving nonsymmetric
linear systems. Math. Comp. 44, 417-424 (1985)

90

(SS2] Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solv-
ing nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. T, 856-869 (1986)

[SLJ] Schultz, M.H., Lee, D., Jackson, K.R.: Application of the Yale sparse technique to

solve the 3-dimensional parabolic wave equation. In: Recent progress in the develop-

ment and application of the parabolic equation (P.D. Scully-Power and D. Lee, eds.).
\aval Underwater Systems Center, Technical Document 7145, May 19084

[Sid] Sidi, A.. Extrapolation vs. projection methods for linear systems of equations. J.
Comput. Appl. Math. 22, 71-88 (1988)

~ [sPM] Smith, C.F., Peterson, A.F., Mittra, R.: The biconjugate gradient method for elec-
tromagnetic scattering. IEEE Trans. Antennas Propagat. AP-38, 938-940 (1990)

[Son] Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM J. Sci. Stat. Comput. 10, 36-52 (1989)

[Sto] Stoer, J.: Solution of large linear systems of equations by conjugate gradient type
methods. In: Mathematical programming — The state of the art (A. Bachem, M.
Grotschel, and B. Korte, eds.), pp- 540-565. Berlin, Heidelberg, New York, Tokyo:
Springer 1983

[SF] Stoer. J., Freund, R On the solution of large indefinite systems of linear equations
by conjugate gradient algorithms. In: Computing methods in applied sciences and
engineering V (R. Glowinski and J.L. Lions, eds.), PP 35-53. Amsterdam: North
Holland 1982

[Szy] Szyld, D.B.: A two-level iterative method for large sparse generalized eigenvalue cal-
culations. Ph. D. Thesis, Department of Mathematics, New York University, October
1983

[SW] Szyld, D.B., Widlund, O.: Applications of conjugate gradient type methods to eigen-
value calculations. In: Advances in computer methods for partial differential equa-
tions III (R. Vichnevetsky and R.S. Stepleman, eds.), pp- 167-173. New Brunswick:
IMACS 1979

[Tap] Tappert, F.D.: The parabolic approximation method. In: Wave propagation and
underwater acoustics (3.B. Keller and J.S. Papadakis, eds.), Pp- 294-287. Lecture
Notes in Physics 70. Berlin, Heidelberg, New York: Springer 1977

[Tay] Taylor, D.R.: Analysis of the look ahead Lanczos algorithm. Ph.D. Dissertation,
University of California, Berkeley, November 1982

[Tru] Trummer, M.: An efficient implementation of 2 conformal mapping method based on

the Szegd kernel. SIAM J. Numer. Anal. 23, 853-872 (1986)

[Van] van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. Preprint, Utrecht, September 1990

91

{Voe] Voevodin, V.V.: The problem of a non-selfadjoint generalization of the conjuzate
gradient method has been closed. USSR Comput. Math. and Math. Phys. 23.
143-144 (1983)

(Wid] Widlund, O.: A Lanczos method for a class of nonsymmetric systems of linear equa-
tions. SIAM J. Numer. Anal. 15, 801-812 (1978)

[Wil] Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Oxford University Press
1965

92

